Advertisement

Journal of Experimental and Theoretical Physics

, Volume 109, Issue 6, pp 961–967 | Cite as

On the origin of gauge symmetries and fundamental constants

  • S. G. Rubin
Nuclei, Particles, Fields, Gravitation, and Astrophysics

Abstract

A statistical mechanism is proposed for symmetrization of an extra space. The conditions and rate of attainment of a symmetric configuration and, as a consequence, the appearance of gauge invariance in low-energy physics is discussed. It is shown that, under some conditions, this situation occurs only after completion of the inflationary stage. The dependences of the constants ℏ and G on the geometry of the extra space and the initial parameters of the Lagrangian of the gravitational field with higher derivatives are analyzed.

Keywords

Entropy Symmetric Space Gauge Symmetry Gauge Invariance Compact Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. A. Bronnikov and S. G. Rubin, Phys. Rev. D: Part. Fields 73, 124 019 (2006); arXiv:gr-qc/0510107.Google Scholar
  2. 2.
    S. G. Rubin, Zh. Éksp. Teor. Fiz. 133(4), 820 (2008) [JETP 106 (4), 714 (2008)].Google Scholar
  3. 3.
    M. Blagojević, Gravitation and Gauge Symmetries (Institute of Physics, Bristol, 2002).zbMATHCrossRefGoogle Scholar
  4. 4.
    J. B. Hartle and S. W. Hawking, Phys. Rev. D: Part. Fields 28, 2960 (1983).MathSciNetADSGoogle Scholar
  5. 5.
    A. Vilenkin, Phys. Lett. B 117, 25 (1982).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    D. L. Wiltshire, in Cosmology: The Physics of the Universe, Ed. by B. Robson, N. Visvanathan, and W. S. Woolcock (World Sci., Singapore, 1996), p. 473.Google Scholar
  7. 7.
    M. J. Duff, L. B. Okun, and G. Veneziano, J. High Energy Phys. (online) 03, 023 (2002), arXiv:physics/0110060.CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    G. E. Volovik, arXiv:0904.1965 [gr-qc].Google Scholar
  9. 9.
    A. Vilenkin, Phys. Rev. D: Part. Fields 37, 888 (1988).MathSciNetADSGoogle Scholar
  10. 10.
    T. A. Brun and J. B. Hartle, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 59, 6370 (1999); arXiv:quant-ph/9808024.Google Scholar
  11. 11.
    A. B. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge University Press, Cambridge, 1996; Faktorial, Moscow, 1999).Google Scholar
  12. 12.
    G. D. Starkman, D. Stojkovic, and M. Trodden, Phys. Rev. D: Part. Fields 63, 103511 (2001); arXiv:hep-th/0012226v2.ADSGoogle Scholar
  13. 13.
    B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry: Methods and Applications (Nauka, Moscow 1979; Springer, New York, 1985).Google Scholar
  14. 14.
    U. Günther, P. Moniz, and A. Zhuk, Astrophys. Space Sci. 283, 679 (2003); arXiv:gr-qc/0209045.CrossRefADSGoogle Scholar
  15. 15.
    K. A. Bronnikov, R. V. Konoplich, and S. G. Rubin, Classical Quantum Gravity 24, 1261 (2007); arXiv:gr-qc/0610003.zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    I. Antoniadis and K. Benakli, Phys. Lett. B 331, 313 (1994); arXiv:hep-ph/9403290.CrossRefADSGoogle Scholar
  17. 17.
    H. Davoudiasl and T. G. Rizzo, Phys. Rev. D: Part. Fields 76, 055009 (2007); arXiv:hep-ph/0702078.ADSGoogle Scholar
  18. 18.
    M. Regis, M. Serone, and P. Ullio, Phys. Lett. B 663, 250 (2008); arXiv:hep-ph/0612286.CrossRefADSGoogle Scholar
  19. 19.
    A. A. Starobinsky, Pis’ma Zh. Éksp. Teor. Fiz. 86(3), 183 (2007) [JETP Lett. 86 (3), 157 (2007)].Google Scholar
  20. 20.
    S. Nojiri and S. D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007); arXiv:hep-th/0601213v5.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    L. M. Sokolowski, Acta Phys. Pol., B 39, 2879 (2008).MathSciNetADSGoogle Scholar
  22. 22.
    S. M. Carroll, J. Geddes, M. B. Hoffman, and R. M. Wald, Phys. Rev. D: Part. Fields 66, 024036 (2002); arXiv:hep-th/0110149.MathSciNetADSGoogle Scholar
  23. 23.
    G. E. Volovik, Proceedings of Conference “From Quantum to Emergent Gravity: Theory and Phenomenology,” Trieste, Italy, 2007 (Trieste, 2007), PoS(QG-Ph) 043.Google Scholar
  24. 24.
    J. Garriga and A. Vilenkin, Phys. Rev. D: Part. Fields 64, 023517 (2001); arXiv:hep-th/0011262.ADSGoogle Scholar
  25. 25.
    A. D. Dolgov and F. R. Urban, Phys. Rev. D: Part. Fields 77, 083503 (2008); arXiv:0801.3090.ADSGoogle Scholar
  26. 26.
    D. H. Lyth and A. Riotto, Phys. Rep. 314, 1 (1999); arXiv:hep-ph/9807278v4.CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    W. Lerche, D. Lust, and A. N. Schellekens, Nucl. Phys. B 287, 477 (1987).CrossRefADSGoogle Scholar
  28. 28.
    S. Kachru, R. Kallosh, A. Linde, and S. P. Trivedi, Phys. Rev. D: Part. Fields 68, 046005 (2003).MathSciNetADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.National Research Nuclear University “Moscow Engineering Physics Institute,”MoscowRussia

Personalised recommendations