Advertisement

Journal of Experimental and Theoretical Physics

, Volume 109, Issue 5, pp 815–832 | Cite as

Magnetoresistance and magnetic ordering in praseodymium and neodymium hexaborides

  • M. A. Anisimov
  • A. V. Bogach
  • V. V. Glushkov
  • S. V. Demishev
  • N. A. Samarin
  • V. B. Filipov
  • N. Yu. Shitsevalova
  • A. V. Kuznetsov
  • N. E. Sluchanko
Electronic Properties of Solid

Abstract

The magnetoresistance Δρ/ρ of single-crystal samples of praseodymium and neodymium hexaborides (PrB6 and NdB6) has been measured at temperatures ranging from 2 to 20 K in a magnetic field of up to 80 kOe. The results obtained have revealed a crossover of the regime from a small negative magnetoresistance in the paramagnetic state to a large positive magnetoresistive effect in magnetically ordered phases of the PrB6 and NdB6 compounds. An analysis of the dependences Δρ(H)/ρ has made it possible to separate three contributions to the magnetoresistance for the compounds under investigation. In addition to the main negative contribution, which is quadratic in the magnetic field (−Δρ/ρ ∝ H 2), a linear positive contribution (Δρ/ρ ∝ H) and a nonlinear ferromagnetic contribution have been found. Upon transition to a magnetically ordered state, the linear positive component in the magnetoresistance of the PrB6 and NdB6 compounds becomes dominant, whereas the quadratic contribution to the negative magnetoresistance is completely suppressed in the commensurate magnetic phase of these compounds. The presence of several components in the magnetoresistance has been explained by assuming that, in the antiferromagnetic phases of PrB6 and NdB6, ferromagnetic nanoregions (ferrons) are formed in the 5d band in the vicinity of the rareearth ions. The origin of the quadratic contribution to the negative magnetoresistance is interpreted in terms of the Yosida model, which takes into account scattering of conduction electrons by localized magnetic moments of rare-earth ions. Within the approach used, the local magnetic susceptibility χloc has been estimated. It has been demonstrated that, in the temperature range T N < T < 20 K, the behavior of the local magnetic susceptibility χloc for the compounds under investigation can be described with good accuracy by the Curie-Weiss dependence χloc ∝ (T − Θ p )−1.

Keywords

Paramagnetic Phase Localize Magnetic Moment Spin Density Wave Antiferromagnetic Phase Incommensurate Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. W. Walch, D. E. Ellis, and F. M. Mueler, Phys. Rev. B: Solid State 15, 1859 (1977).ADSGoogle Scholar
  2. 2.
    N. Sato, A. Simiyama, S. Kunii, H. Nagano, and T. Kasuya, J. Phys. Soc. Jpn. 54, 1923 (1985).CrossRefADSGoogle Scholar
  3. 3.
    J. M. Effantin, J. Rossat-Mignod, P. Burlet, H. Bartholin, S. Kunii, and T. Kasuya, J. Magn. Magn. Mater. 47–48, 145 (1985).CrossRefGoogle Scholar
  4. 4.
    S. Horn, F. Steglich, M. Loewenhaupt, H. Scheuer, W. Felsch, and K. Winzer, Z. Phys. B: Condens. Matter 42, 125 (1981).CrossRefADSGoogle Scholar
  5. 5.
    C. Marcenat, D. Jaccard, D. Sierro, J. Flouquet, Y. Onuki, and T. Komatsubahara, J. Low Temp. Phys. 78, 261 (1990).CrossRefADSGoogle Scholar
  6. 6.
    Y. Onuki, A. Umezawa, W. K. Kwok, G. W. Crabtree, M. Nishihara, T. Yamazaki, T. Omi, and T. Komatsubara, Phys. Rev. B: Condens. Matter 40, 11195 (1989).ADSGoogle Scholar
  7. 7.
    N. E. Sluchanko, V. V. Glushkov, B. P. Gorshunov, S. V. Demishev, M. V. Kondrin, A. A. Pronin, A. A. Volkov, A. K. Savchenko, G. Grüner, Y. Bruynseraede, V. V. Moshchalkov, and S. Kunii, Phys. Rev. B: Condens. Matter 61, 9906 (2000).ADSGoogle Scholar
  8. 8.
    C. Cooley, M. C. Aronson, A. Lacerda, Z. Fisk, P. C. Canfield, and R. P. Guertin, Phys. Rev. B: Condens. Matter 52, 7322 (1995).ADSGoogle Scholar
  9. 9.
    S. Süllow, I. Prassad, M. C. Aroncon, J. L. Sarrao, Z. Fisk, D. Hristova, A. H. Lacerda, M. Hundley, A. Vigliante, and D. Gibbs, Phys. Rev. B: Condens. Matter 57, 5860 (1998).ADSGoogle Scholar
  10. 10.
    A. V. Semeno, V. V. Glushkov, A. V. Bogach, N. E. Sluchanko, A. V. Dukhnenko, V. B. Fillippov, N. Yu. Shitsevalova, and S. V. Demishev, Phys. Rev. B: Condens. Matter 79, 014423 (2009).ADSGoogle Scholar
  11. 11.
    M. Loewenhaupt and M. Prager, Z. Phys. B: Condens. Matter 62, 195 (1986).CrossRefADSGoogle Scholar
  12. 12.
    G. Pofahl, E. Zirngiebl, S. Blumenröder, H. Brenten, G. Güntherodt, and K. Winzer, Z. Phys. B: Condens. Matter 66, 339 (1987).CrossRefADSGoogle Scholar
  13. 13.
    G. Uimin and W. Brenig, Phys. Rev. B: Condens. Matter 61, 60 (2000).ADSGoogle Scholar
  14. 14.
    C. M. McCarthy and C. W. Tompson, J. Phys. Chem. Solids 41, 1319 (1980).CrossRefADSGoogle Scholar
  15. 15.
    C. M. McCarthy, C. W. Tompson, R. J. Graves, H. W. White, Z. Fisk, and H. R. Ott, Solid State Commun. 36, 861 (1980).CrossRefADSGoogle Scholar
  16. 16.
    P. Burlet, J. M. Effantin, J. Rossat-Mignod, S. Kunii, and T. Kasuya, J. Phys., Colloq. 49(C8), 459 (1988).Google Scholar
  17. 17.
    M. Sera, M.-S. Kim, H. Tou, and S. Kunii, J. Phys. Soc. Jpn. 73, 3422 (2004).CrossRefADSGoogle Scholar
  18. 18.
    H. Iwakubo, S. Ikeda, Y. Kishino, H. Tanida, M. Sera, and F. Iga, Phys. Rev. B: Condens. Matter 78, 012409 (2008).ADSGoogle Scholar
  19. 19.
    S. Awaji, N. Kobayashi, S. Sakatsume, S. Kunii, and M. Sera, J. Phys. Soc. Jpn. 68, 2518 (1999).CrossRefADSGoogle Scholar
  20. 20.
    J. M. Mignot, G. Andre, J. Robert, M. Sera, and F. Iga, Phys. Rev. B: Condens. Matter 78, 014415 (2008).ADSGoogle Scholar
  21. 21.
    S. Kobayashi, M. Sera, M. Hiroi, T. Nishizaki, N. Kobayashi, and S. Kunii, J. Phys. Soc. Jpn. 70, 1721 (2001).CrossRefADSGoogle Scholar
  22. 22.
    O. Sakai, R. Shina, H. Shiba, and P. Thalmeier, J. Phys. Soc. Jpn. 66, 3005 (1997).CrossRefADSGoogle Scholar
  23. 23.
    P. Morin, S. Kunii, and T. Kasuya, J. Magn. Magn. Mater. 96, 145 (1991).CrossRefADSGoogle Scholar
  24. 24.
    M. Amara, S. E. Luca, R.-M. Galéra, F. Givord, C. Detlefs, and S. Kunii, Phys. Rev. B: Condens. Matter 72, 064447 (2005).ADSGoogle Scholar
  25. 25.
    K. Kuwahara, R. Yamamoto, M. Kohgi, H. Nakao, K. Ishii, K. Iwasa, Y. Murakami, S. Kunii, H. Sagayama, Y. Wakabayashi, and H. Sawa, Physica B (Amsterdam) 359–361, 965 (2005).Google Scholar
  26. 26.
    Y. Kuramoto and K. Kubo, Physica B (Amsterdam) 328, 135 (2003).ADSGoogle Scholar
  27. 27.
    Y. Kuramoto and K. Kubo, J. Phys. Soc. Jpn. 71, 2633 (2002).CrossRefADSGoogle Scholar
  28. 28.
    N. E. Sluchanko, A. V. Bogach, V. V. Glushkov, S. V. Demishev, V. Yu. Ivanov, M. I. Ignatov, A. V. Kuznetsov, N. A. Samarin, A. V. Semeno, and N. Yu. Shitsevalova, Zh. Éksp. Teor. Fiz. 131(1), 133 (2007) [JETP 104 (1), 120 (2007)].Google Scholar
  29. 29.
    N. E. Sluchanko, A. V. Bogach, V. V. Glushkov, S. V. Demishev, V. Yu. Ivanov, N. Yu. Shitsevalova, and V. B. Filipov, Pis’ma Zh. Éksp. Teor. Fiz. 88(5), 366 (2008) [JETP Lett. 88 (5), 318 (2008)].Google Scholar
  30. 30.
    N. Yu. Shitsevalova, Candidate’s Dissertation (Wroclaw, 2001).Google Scholar
  31. 31.
    N. E. Sluchanko, A. V. Bogach, V. V. Glushkov, S. V. Demishev, M. I. Ignatov, N. A. Samarin, G. S. Burkhanov, and O. D. Chistyakov, Zh. Éksp. Teor. Fiz. 125(4), 906 (2004) [JETP 98 (4), 793 (2004)].Google Scholar
  32. 32.
    M. Sera, S. Kobayashi, M. Hiroi, and N. Kobayashi, Phys. Rev. B: Condens. Matter 54, R5207 (1996).ADSGoogle Scholar
  33. 33.
    J. Stankiewicz, S. Nakatsuji, and Z. Fisk, Phys. Rev. B: Condens. Matter 71, 134426 (2006).ADSGoogle Scholar
  34. 34.
    M. Reiffers, J. Šebek, E. Šantavá, N. Shitsevalova, S. Gabáni, G. Pristáš, and K. Flachbart, J. Magn. Magn. Mater. 310, e595 (2007).CrossRefADSGoogle Scholar
  35. 35.
    M. Sera, M. Hiroi, S. Kobayashi, and S. Kunii, J. Phys. Soc. Jpn. 67, 629 (1998).CrossRefADSGoogle Scholar
  36. 36.
    S. Nakamura, T. Goto, S. Kunii, and S. Kunii, J. Phys. Soc. Jpn. 63, 623 (1994).CrossRefADSGoogle Scholar
  37. 37.
    K. Yosida, Phys. Rev. 107, 396 (1957).MATHCrossRefADSGoogle Scholar
  38. 38.
    A. V. Bogach, G. S. Burkhanov, O. D. Chistyakov, V. V. Glushkov, S. V. Demishev, N. A. Samarin, Yu. B. Paderno, N. Yu. Shitsevalova, and N. E. Sluchanko, Physica B (Amsterdam) 378–380, 769 (2006).Google Scholar
  39. 39.
    É. L. Nagaev, Pis’ma Zh. Éksp. Teor. Fiz. 6(1), 484 (1967) [JETP Lett. 6 (1), 18 (1967)].Google Scholar
  40. 40.
    M. Yu. Kagan, K. I. Kugel, and D. I. Khomskii, Zh. Éksp. Teor. Fiz. 120(2), 470 (2001) [JETP 93 (2), 415 (2001)].Google Scholar
  41. 41.
    H. Hacker, Jr. and M. S. Lin, Solid State Commun. 6, 379 (1968).CrossRefADSGoogle Scholar
  42. 42.
    S. Takagi, S. Itabashi, S. Kunii, and T. Kasuya, J. Magn. Magn. Mater. 52, 267 (1985).CrossRefADSGoogle Scholar
  43. 43.
    M. B. Fontes, S. L. Bud’ko, M. A. Continentino, and E. M. Baggio-Saitovitch, Physica B (Amsterdam) 270, 255 (1999).ADSGoogle Scholar
  44. 44.
    B. Chevalier, J. G. Soldevilla, J. I. Espeso, J. Rodríguez Fernández, J. C. Gómez Sal, and J. Etourneau, Physica B (Amsterdam) 259–261, 44 (1999).Google Scholar
  45. 45.
    N. Nakajima, K. Izawa, Y. Matsuda, S. Uji, T. Terashima, H. Shishido, R. Settai, Y. Onuki, and H. Kontani, J. Phys. Soc. Jpn. 73, 5 (2004).CrossRefADSGoogle Scholar
  46. 46.
    N. Nakajima, H. Shishido, H. Nakai, T. Shibauchi, M. Hedo, Y. Uwatoko, T. Matsumoto, R. Settai, Y. Onuki, H. Kontani, and Y. Matsuda, Phys. Rev. B: Condens. Matter 77, 214504 (2008).ADSGoogle Scholar
  47. 47.
    J. M. Harris, Y. F. Yan, P. Matl, N. P. Ong, P. W. Anderson, T. Kimura, and K. Kitazawa, Phys. Rev. Lett. 75, 1391 (1995).CrossRefADSGoogle Scholar
  48. 48.
    T. Sasaki, A. Lebed’, T. Fukase, and N. Toyota, Phys. Rev. B: Condens. Matter 54, 12969 (1996).ADSGoogle Scholar
  49. 49.
    G. M. Danner, P. M. Chaikin, and S. T. Hannahs, Phys. Rev. B: Condens. Matter 53, 2727 (1996).ADSGoogle Scholar
  50. 50.
    S. Arajs and G. R. Dunmyre, J. Appl. Phys. 36, 3555 (1965).CrossRefADSGoogle Scholar
  51. 51.
    S. Arajs, Phys. Status Solidi 37, 329 (1970).CrossRefGoogle Scholar
  52. 52.
    S. Arajs, G. R. Dunmyre, and S. J. Dechter, Phys. Rev. 154, 448 (1967).CrossRefADSGoogle Scholar
  53. 53.
    G. Montambaux, Phys. Rev. B: Condens. Matter 38, 4788 (1988).ADSGoogle Scholar
  54. 54.
    W. A. C. Erkelens, L. P. Regnault, J. Rossat-Mignod, M. Gordon, S. Kunii, T. Kasuya, and C. Vettier, J. Phys., Colloq. 49(C8), 457 (1988).CrossRefGoogle Scholar
  55. 55.
    E. V. Nefedova, N. N. Tiden, K. Siemensmeyer, P. A. Alekseev, V. N. Lazukov, I. P. Sadikov, and N. Yu. Shitsevalova, Zh. Éksp. Teor. Fiz. 132(1), 19 (2007) [JETP 105 (1), 12 (2007)].Google Scholar
  56. 56.
    M. D. Le, K. A. McEwen, J. G. Park, S. Lee, F. Iga, and K. C Rule, J. Phys.: Condens. Matter 20, 104231 (2008).CrossRefADSGoogle Scholar
  57. 57.
    V. V. Glushkov, I. B. Voskoboĭnikov, S. V. Demishev, I. V. Krivitskiĭ, A. Menovsky, V. V. Moshchalkov, N. A. Samarin, and N. E. Sluchanko, Zh. Éksp. Teor. Fiz. 126(2), 444 (2004) [JETP 99 (2), 394 (2004)].Google Scholar
  58. 58.
    K. Kubo and Y. Kuramoto, J. Phys.: Condens. Matter 15, S2251 (2003).CrossRefADSGoogle Scholar
  59. 59.
    R. G. Goodrich, N. Harrison, and Z. Fisk, Phys. Rev. Lett. 97, 146404 (2006).CrossRefADSGoogle Scholar
  60. 60.
    M. Sera, S. Itabashi, and S. Kunii, J. Phys. Soc. Jpn. 66, 548 (1997).CrossRefADSGoogle Scholar
  61. 61.
    M. Sera, S. Goto, T. Koshikawa, M.-S. Kim, H. Tou, and F. Iga, J. Phys. Soc. Jpn. 75, 014706 (2006).CrossRefADSGoogle Scholar
  62. 62.
    Y. Tanaka, M. Sera, K. Katsumata, S. W. Lovesey, Y. Tabata, S. Shimomura, A. Kikkawa, F. Iga, and S. Kishimoto, J. Phys. Soc. Jpn. 75, 073702 (2006).CrossRefADSGoogle Scholar
  63. 63.
    S. Tsuji, T. Endo, M. Sera, K. Kojima, M. Kawakami, and S. Kunii, J. Phys. Soc. Jpn. 69, 1974 (2000).CrossRefADSGoogle Scholar
  64. 64.
    R. Shiina, H. Shiba, and P. Thalmeier, J. Phys. Soc. Jpn. 66, 1741 (1997).CrossRefADSGoogle Scholar
  65. 65.
    R. Shiina, O. Sakai, H. Shiba, and P. Thalmeier, J. Phys. Soc. Jpn. 67, 3005 (1998).CrossRefGoogle Scholar
  66. 66.
    U. Staub, Y. Tanaka, K. Katsumata, A. Kikkawa, Y. Kuramoto, and Y. Onuki, J. Phys.: Condens. Matter 18, 11007 (2006).CrossRefADSGoogle Scholar
  67. 67.
    Y. Tanaka, U. Staub, K. Katsumata, S. W. Lovesey, J. E. Lorenzo, Y. Narumi, V. Scagnoli, S. Shimomura, Y. Tabata, Y. Onuki, Y. Kuramoto, A. Kikkawa, T. Ishikawa, and H. Kitamura, Europhys. Lett. 68, 671 (2004).CrossRefADSGoogle Scholar
  68. 68.
    M. Saitoh, N. Okada, E. Nishibori, H. Takagiwa, T. Yokoo, M. Nishi, K. Kakurai, S. Kunii, M. Takata, M. Sakata, and J. Akimitsu, J. Phys. Soc. Jpn. 71, 2369 (2002).CrossRefADSGoogle Scholar
  69. 69.
    A. Schenck, F. N. Gygax, and S. Kunii, Phys. Rev. Lett. 89, 037201 (2002).CrossRefADSGoogle Scholar
  70. 70.
    A. Schenck, F. N. Gygax, G. Solt, O. Zaharko, and S. Kunii, Phys. Rev. Lett. 93, 257601 (2004).CrossRefADSGoogle Scholar
  71. 71.
    T. Kasuya and S. Itabashi, J. Phys. Soc. Jpn. 66, 3864 (1997).CrossRefADSGoogle Scholar
  72. 72.
    E. Fawcett, V. Pluzhnikov, and H. Klimker, Phys. Rev. B: Condens. Matter 43, 8531 (1991).ADSGoogle Scholar
  73. 73.
    O. Zacharko, P. Fischer, A. Schenk, S. Kunii, P.-J. Brown, F. Tasset, and T. Hansen, Phys. Rev. B: Condens. Matter 68, 214401 (2003).ADSGoogle Scholar
  74. 74.
    H. Suzuki, Yun Xue, A. Hosomichi, S. Naher, F. Hata, and H. Kaneko, J. Supercond. Novel Magn. 19, 89 (2006).CrossRefGoogle Scholar
  75. 75.
    V. Plakhty, L. P. Regnault, A. V. Goltsev, S. V. Gavrilov, F. Yakhou, J. Flouquet, C. Vettier, and S. Kunii, Phys. Rev. B: Condens. Matter 71, 100407 (2005).ADSGoogle Scholar
  76. 76.
    S. Horn, F. Steglich, M. Loewenhaupt, H. Scheuer, W. Felsch, and K. Winzer, Z. Phys. B: Condens. Matter 42, 125 (1981).CrossRefADSGoogle Scholar
  77. 77.
    M. Loewenhaupt, J. M. Carpenter, and C. K. Loong, J. Magn. Magn. Mater. 52, 245 (1985).CrossRefADSGoogle Scholar
  78. 78.
    Y. Onuki, T. Komatsubara, P. H. P. Reinders, and M. Springford, J. Phys. Soc. Jpn. 58, 3698 (1989).CrossRefADSGoogle Scholar
  79. 79.
    Y. Ônuki, Y. Kurosawa, T. Omi, T. Komatsubara, R. Yoshizaki, H. Ikeda, K. Maezawa, S. Wakabayashi, A. Umezawa, W. K. Kwok, and G. W. Crabtree, J. Magn. Magn. Mater. 76–77, 37 (1988).CrossRefGoogle Scholar
  80. 80.
    H. C. Walker, K. A. McEwen, D. F. McMorrow, M. Bleckmann, J.-G. Park, S. Lee, F. Iga, and D. Mannix, Phys. Rev. B: Condens. Matter 79, 054402 (2009).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • M. A. Anisimov
    • 1
    • 2
  • A. V. Bogach
    • 2
  • V. V. Glushkov
    • 1
    • 2
  • S. V. Demishev
    • 2
  • N. A. Samarin
    • 2
  • V. B. Filipov
    • 3
  • N. Yu. Shitsevalova
    • 3
  • A. V. Kuznetsov
    • 2
    • 4
  • N. E. Sluchanko
    • 2
  1. 1.Moscow Institute of Physics and Technology (State University)Dolgoprudnyĭ, Moscow oblastRussia
  2. 2.A. M. Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  3. 3.I. N. Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine
  4. 4.Moscow Engineering Physics Institute (State University)MoscowRussia

Personalised recommendations