Static and dynamic double-exchange effects in doped manganites

  • K. O. Khutsishvili
  • N. P. FokinaEmail author
Electronic Properties of Solid


It is shown that antiferromagnetic ordering in doped manganites with strong double-exchange interaction is transformed into ferromagnetic canted ordering with residual antiferromagnetic behavior in the basal plane as a result of hopping of mobile electron. The canting angle between the core magnetiztions is controlled by the competition of the Heisenberg antiferromagnetic exchange and double exchange. The temperatures of the paramagnet-antiferromagnet and paramagnet-canted ferromagnetic phase transitions are calculated. The results on the dependence of the magnetization in the canted phase and critical temperatures on the doping degree are in qualitative agreement with experiment. The form of uniform oscillations of core magnetiztions in the canted ferromagnetic phase of a doped manganite sample with hopping conduction is analyzed with and without allowance for relaxation of mobile electrons to the lattice. We propose a mechanism for the ferromagnetic resonance broadening and its resonance frequency shift in a ferromagnetic conducting sample (hopping conduction) of doped manganite due to double exchange. The resonance frequency shift and the ferromagnetic resonance damping constant (linewidth) are calculated in this model. In contrast to other relaxation mechanisms, the model is based on the fact that mobile electrons rapidly relax to the lattice (over a time on the order of the precession period).


Manganite Mobile Electron Spontaneous Magnetization Double Exchange Resonance Frequency Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999).CrossRefADSGoogle Scholar
  2. 2.
    E. L. Nagaev, Phys. Rep. 346, 387 (2001).CrossRefADSGoogle Scholar
  3. 3.
    Yu. A. Izyumov and Yu. N. Skryabin, Usp. Fiz. Nauk 171(2), 121 (2001) [Phys.-Usp. 44 (2), 109 (2001)].CrossRefGoogle Scholar
  4. 4.
    M. T. Causa, M. Tovar, A. Caneiro, F. Prado, G. Ibañez, C. A. Ramos, A. Butera, B. Alascio, X. Obradors, S. Piñol, F. Rivadulla, C. Vázquez-Vázquez, M. A. López-Quintela, J. Rivas, Y. Tokura, and S. B. Oseroff, Phys. Rev. B: Condens. Matter 58, 3233 (1998).ADSGoogle Scholar
  5. 5.
    V. A. Atsarkin, V. V. Demidov, G. A. Vasneva, and K. Conder, Phys. Rev. B: Condens. Matter 63, 092405 (2001).ADSGoogle Scholar
  6. 6.
    V. A. Atsarkin, V. V. Demidov, G. A. Vasneva, and D. G. Gotovtsev, Appl. Magn. Reson. 21, 147 (2001).CrossRefGoogle Scholar
  7. 7.
    C. Rettori, D. Rao, J. Singley, D. Kidwell, S. B. Oseroff, M. T. Causa, J. J. Neumeier, K. J. McClellan, S-W. Cheong, and S. Schultz, Phys. Rev. B: Condens. Matter 55, 3083 (1997).ADSGoogle Scholar
  8. 8.
    F. Rivadulla, M. A. López-Quintela, L. E. Hueso, J. Rivas, M. T. Causa, C. Ramos, R. D. Sánchez, and M. Tovar, Phys. Rev. B: Condens. Matter 60, 11922 (1999).ADSGoogle Scholar
  9. 9.
    A. I. Shames, E. Rosenberg, G. Gorodetsky, and Ya.M. Mukovskii, Phys. Rev. B: Condens. Matter 68, 174402 (2003).ADSGoogle Scholar
  10. 10.
    C. Zener, Phys. Rev. 82, 403 (1951).CrossRefADSGoogle Scholar
  11. 11.
    P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).CrossRefADSGoogle Scholar
  12. 12.
    P. G. de Gennes, Phys. Rev. 118, 141 (1960).CrossRefADSGoogle Scholar
  13. 13.
    G. H. Jonker and J. H. van Santen, Physica (Amsterdam) 16, 337 (1950).CrossRefADSGoogle Scholar
  14. 14.
    E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).CrossRefADSGoogle Scholar
  15. 15.
    J. B. Goodenough, Phys. Rev. 100, 564 (1955).CrossRefADSGoogle Scholar
  16. 16.
    R. Mahendiran, S. K. Tiwary, A. K. Raychaudhuri, T. V. Ramakrishnan, R. Mahesh, N. Rangavittal, and C. N. Rao, Phys. Rev. B: Condens. Matter 53, 3348 (1996).ADSGoogle Scholar
  17. 17.
    K. von Helmholt, J. Wecker, K. Samwer, and K. Bärner, J. Magn. Magn. Mater. 151, 411 (1955).Google Scholar
  18. 18.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1953; Nauka, Moscow, 1978).zbMATHGoogle Scholar
  19. 19.
    E. Dagotto, J. Burgy, and A. Moreo, arXiv:cond-mat/0209689.Google Scholar
  20. 20.
    A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnets (Nauka, Moscow, 1973), Chaps. 4, 9 [in Russian].Google Scholar
  21. 21.
    Q. Huang, A. Santoro, J. W. Lynn, R. W. Erwin, J. A. Borchers, J. L. Peng, K. Ghosh, and R. L. Greene, Phys. Rev. B: Condens. Matter 58, 2684 (1998).ADSGoogle Scholar
  22. 22.
    D. Talbayev, L. Mikhaly, and J. Zhou, Phys. Rev. Lett. 93, 017 202 (2004).CrossRefGoogle Scholar
  23. 23.
    V. A. Ivanshin, J. Deisenhofer, H.-A. Krug von Nidda, A. Loidl, A. A. Mukhin, A. M. Balbashov, and M. V. Eremin, Phys. Rev. B: Condens. Matter 61, 6213 (2000).ADSGoogle Scholar
  24. 24.
    S. E. Lofland, V. Ray, P. H. Kim, S. M. Bhagat, M. A. Manheimer, and S. D. Tyagi, Phys. Rev. B: Condens. Matter 55, 2749 (1997).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Dzhavakhishvili State UniversityTbilisiGeorgia

Personalised recommendations