Optical edge modes in photonic liquid crystals

  • V. A. BelyakovEmail author
  • S. V. Semenov
Statistical, Nonlinear, and Soft Matter Physics


An analytic theory of localized edge modes in chiral liquid crystals (CLCs) is developed. Equations determining the edge-mode frequencies are found and analytically solved in the case of low decaying modes and are solved numerically for the problem parameter values typical for the experiment. The discrete edge-mode frequencies specified by the integer numbers n are located close to the stop-band edge frequencies outside the band. The expressions for the spatial distribution of the n’s mode field in a CLC layer and for its temporal decay are presented. The possibilities of a reduction of the lasing threshold due to the anomalously strong absorption effect are theoretically investigated for a distributed feedback lasing in CLCs. It is shown that a minimum of the threshold pumping wave intensity may be reached, generally, for the pumping wave propagating at an angle to the helical axis. However, for lucky values of the related parameters, it may be reached for the pumping wave propagating along the helical axis. The lowest threshold pumping wave intensity occurs for the lasing at the first low-frequency band-edge lasing mode and the pumping wave propagating at an angle to the spiral axis corresponding to the first angular absorption maximum of the anomalously strong absorption effect at the high-frequency edge of the stop band. The study is performed in the case of the average dielectric constant of the liquid crystal coinciding with the dielectric constant of the ambient material. Numerical calculations of the distributed feedback lasing threshold at the edge-mode frequencies are performed for typical values of the relevant parameters.

PACS numbers

42.70.Qs 42.70.Df 


  1. 1.
    V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Prog. Quantum Electron. 27, 369 (2003).CrossRefADSGoogle Scholar
  2. 2.
    I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, Pis’ma Zh. Éksp. Teor. Fiz. 32(1), 27 (1980) [JETP Lett. 32 (1), 24 (1980)].Google Scholar
  3. 3.
    B. Taheri, A. F. Muñoz, P. Palffy-Muhoray, and R. Twieg, Mol. Cryst. Liq. Cryst. 358, 73 (2001).CrossRefGoogle Scholar
  4. 4.
    M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, Adv. Mater. (Weinheim) 15, 974 (2003).CrossRefGoogle Scholar
  5. 5.
    M. I. Barnik, L. M. Blinov, V. V. Lazarev, S. P. Palto, B. A. Umanskii, and N. M. Shtykov, J. Appl. Phys. 103, 123 113 (2008).CrossRefGoogle Scholar
  6. 6.
    S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, J. Appl. Phys. 97, 023 103 (2005).CrossRefGoogle Scholar
  7. 7.
    A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, Appl. Phys. Lett. 86, 051107 (2005).CrossRefADSGoogle Scholar
  8. 8.
    H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, Adv. Mater. (Weinheim) 13, 1069 (2001).CrossRefGoogle Scholar
  9. 9.
    V. A. Belyakov, A. A. Gevorgian, O. S. Eritsian, and N. V. Shipov, Zh. Tekh. Fiz. 57(7), 1418 (1987) [Sov. Phys. Tech. Phys. 32 (7), 843 (1987)].Google Scholar
  10. 10.
    V. A. Belyakov and V. E. Dmitrienko, Sov. Sci. Rev., Sec. A 13, 80 (1989).Google Scholar
  11. 11.
    V. A. Belyakov, Mol. Cryst. Liq. Cryst. 453, 43 (2006).CrossRefGoogle Scholar
  12. 12.
    V. A. Belyakov, Ferroelectrics 364, 33 (2008).CrossRefGoogle Scholar
  13. 13.
    Y. Matsuhisa, Y. Huang, Y. Zhou, S.-T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, Appl. Phys. Lett. 90, 091114 (2007).CrossRefADSGoogle Scholar
  14. 14.
    H. Kogelnik and C. V. Shank, J. Appl. Phys. 43, 2327 (1972).CrossRefADSGoogle Scholar
  15. 15.
    A. Yariv and M. Nakamura, IEEE J. Quantum Electron. QE-13, 233 (1977).CrossRefADSGoogle Scholar
  16. 16.
    J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, J. Appl. Phys. 75, 1896 (1994).CrossRefADSGoogle Scholar
  17. 17.
    H. de Vries, Acta Crystallogr. 4, 219 (1951).CrossRefGoogle Scholar
  18. 18.
    E. I. Kats, Zh. Éksp. Teor. Fiz. 59, 1854 (1971) [Sov. Phys. JETP 32, 1004 (1971)].Google Scholar
  19. 19.
    V. A. Belyakov and A. S. Sonin, Optics of Cholesteric Liquid Crystals (Nauka, Moscow, 1982) [in Russian].Google Scholar
  20. 20.
    P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).Google Scholar
  21. 21.
    V. A. Belyakov, Diffraction Optics of Complex Structured Periodic Media (Springer, New York, 1992), Chapter 4.Google Scholar
  22. 22.
    K. Funamoto, M. Ozaki, and K. Yoshino, Jpn. J. Appl. Phys., Part 2 42, L1523 (2003).CrossRefGoogle Scholar
  23. 23.
    V. A. Belyakov, I. W. Stewart, and M. A. Osipov, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 71, 051708 (2005).ADSGoogle Scholar
  24. 24.
    V. A. Belyakov and V. E. Dmitrienko, Fiz. Tverd. Tela 15, 2724, 3540 (1973) [Sov. Phys. Solid States 15, 1811, 2365 (1973)].Google Scholar
  25. 25.
    W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, Nat. Mater. 1, 111 (2002).CrossRefADSGoogle Scholar
  26. 26.
    V. A. Belyakov and N. V. Shipov, Zh. Éksp. Teor. Fiz. 82(4), 1159 (1982) [Sov. Phys. JETP 55 (4), 674 (1982)].Google Scholar
  27. 27.
    N. V. Shipov and V. A. Belyakov, Zh. Éksp. Teor. Fiz. 75(5), 1589 (1978) [Sov. Phys. JETP 48 (5), 802 (1978)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Russian Research Center Kurchatov InstituteMoscowRussia

Personalised recommendations