Advertisement

Structure, electrical and magnetic properties, and the origin of the room temperature ferromagnetism in Mn-implanted Si

  • A. F. OrlovEmail author
  • A. B. Granovsky
  • L. A. Balagurov
  • I. V. Kulemanov
  • Yu. N. Parkhomenko
  • N. S. Perov
  • E. A. Gan’shina
  • V. T. Bublik
  • K. D. Shcherbachev
  • A. V. Kartavykh
  • V. I. Vdovin
  • A. Sapelkin
  • V. V. Saraikin
  • Yu. A. Agafonov
  • V. I. Zinenko
  • A. Rogalev
  • A. Smekhova
Order, Disorder, and Phase Transition in Condensed System

Abstract

The structure and the electrical and magnetic properties of Mn-implanted Si, which exhibits ferromagnetic ordering at room temperature, are studied. Single-crystal n- and p-type Si wafers with high and low electrical resistivities are implanted by manganese ions to a dose of 5 × 1016 cm−2. After implantation and subsequent vacuum annealing at 850°C, the implanted samples are examined by various methods. The Mn impurity that exhibits an electric activity and is incorporated into the Si lattice in interstitial sites is found to account for only a few percent of the total Mn content. The main part of Mn is fixed in Mn15Si26 nanoprecipitates in the Si matrix. The magnetization of implanted Si is found to be independent of the electrical resistivity and the conductivity type of silicon and the type of implanted impurity. The magnetization of implanted Si increases slightly upon short-term postimplantation annealing and disappears completely upon vacuum annealing at 1000°C for 5 h. The Mn impurity in Si is shown to have no significant magnetic moment at room temperature. These results indicate that the room temperature ferromagnetism in Mn-implanted Si is likely to be caused by implantation-induced defects in the silicon lattice rather than by a Mn impurity.

PACS numbers

61.72.uf 72.80.Cw 75.50.Pp 

References

  1. 1.
    H. Ohno, Science (Washington) 281, 951 (1998).CrossRefADSGoogle Scholar
  2. 2.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science (Washington) 287, 1019 (2000).CrossRefADSGoogle Scholar
  3. 3.
    A. Stroppa, S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B: Condens. Matter 68, 155203 (2003).ADSGoogle Scholar
  4. 4.
    F. M. Zhang, X. C. Liu, J. Gao, X. S. Wu, Y. W. Du, H. Zhu, J. Q. Xiao, and P. Chen, Appl. Phys. Lett. 85, 786 (2004).CrossRefADSGoogle Scholar
  5. 5.
    M. Bolduc, C. Awo-Affouda, A. Stollenwerk, M. B. Huang, F. G. Ramos, G. Agnello, and V. P. LaBella, Phys. Rev. B: Condens. Matter 71, 033302 (2005).ADSGoogle Scholar
  6. 6.
    P. R. Bandaru, J. Park, J. S. Lee, Y. J. Tang, L.-H. Chen, S. Jin, S. A. Song, and J. R. O’Brien, Appl. Phys. Lett. 89, 112502 (2006).CrossRefADSGoogle Scholar
  7. 7.
    I. T. Yoon, C. J. Park, and T. W. Kang, J. Magn. Magn. Mater. 311, 693 (2007).CrossRefADSGoogle Scholar
  8. 8.
    E. S. Demidov, Yu. A. Danilov, V. V. Podol’skiĭ, V. P. Lesnikov, M. V. Sapozhnikov, and A. I. Suchkov, Pis’ma Zh. Éksp. Teor. Fiz. 83(12), 664 (2006) [JETP Lett. 83 (12), 568 (2006)].Google Scholar
  9. 9.
    E. S. Demidov, B. A. Aronzon, S. N. Gusev, V. V. Karzanov, A. S. Lagutin, V. P. Lesnikov, S. A. Levchuk, S. N. Nikolaev, N. S. Perov, V. V. Podolskii, V. V. Rylkov, M. V. Sapozhnikov, and A. V. Lashkul, J. Magn. Magn. Mater. 321, 690 (2009).CrossRefADSGoogle Scholar
  10. 10.
    A. Misiuk, J. Bak-Misiuk, B. Surma, W. Osinniy, M. Szot, T. Story, and J. Jagielski, J. Alloys Compd. 423, 201 (2006).CrossRefGoogle Scholar
  11. 11.
    Shengqiang Zhou, K. Potzger, Gufei Zhang, A. Mücklich, F. Eichhorn, N. Schell, R. Grüczschel, B. Schmidt, W. Skorupa, M. Helm, and J. Fassbender, Phys. Rev. B: Condens. Matter 75, 085 203 (2007).Google Scholar
  12. 12.
    A. Wolska, K. Lawniczak-Jablonska, M. Klepka, M. S. Walczak, and A. Misiuk, Phys. Rev. B: Condens. Matter 75, 113201 (2007).ADSGoogle Scholar
  13. 13.
    X. C. Liu, Z. H. Lu, Z. L. Lu, L. Y. Lv, X. S. Wu, F. M. Zhang, and Y. W. Du, J. Appl. Phys. 100, 073903 (2006).CrossRefADSGoogle Scholar
  14. 14.
    A. B. Granovskiĭ, Yu. P. Sukhorukov, A. F. Orlov, N.S. Perov, A. V. Korolev, E. A. Gan’shina, V. I. Zinenko, Yu. A. Agafonov, V. V. Saraĭkin, A. V. Telegin, and D. G. Yarkin, Pis’ma Zh. Éksp. Teor. Fiz. 85(7), 414 (2007) [JETP Lett. 85 (7), 335 (2007)].Google Scholar
  15. 15.
    A. F. Orlov, L. A. Balagurov, I. V. Kulemanov, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 43(12) (in press) [Semiconductors 43 (12) (in press)].Google Scholar
  16. 16.
    A. F. Orlov, V. T. Bublik, V. I. Vdovin, Yu. A. Agafonov, L. A. Balagurov, V. I. Zinenko, I. V. Kulemanov, and K. D. Shcherbachev, Kristallografiya 54(4), 596 (2009) [Crystallogr. Rep. 54 (4), 555 (2009)].Google Scholar
  17. 17.
    T. Dubroca, J. Hack, and R. E. Hummel, Appl. Phys. Lett. 88, 182 504 (2006).CrossRefGoogle Scholar
  18. 18.
    S. V. Adashkevich, N. M. Lapchuk, V. F. Stel’makh, G.G. Fedoruk, and E. N. Shumskaya, Pis’ma Zh. Éksp. Teor. Fiz. 84(10), 547 (2007) [JETP Lett. 84 (10), 642 (2007)].Google Scholar
  19. 19.
    P. Dev, Yu Xue, and P. Zhang, Phys. Rev. Lett. 100, 117204 (2008).CrossRefADSGoogle Scholar
  20. 20.
    Qingyu Xu, H. Schmidt, Shengqiang Zhou, K. Potzger, M. Helm, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinazi, C. Meinecke, and M. Grundmann, Appl. Phys. Lett. 92, 082 508 (2008).Google Scholar
  21. 21.
    K. Potzger, S. Zhou, J. Grenzer, Shengqiang Zhou, J. Grenzer, M. Helm, and J. Fassbender, Appl. Phys. Lett. 92, 182 504 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. F. Orlov
    • 1
    Email author
  • A. B. Granovsky
    • 2
  • L. A. Balagurov
    • 1
  • I. V. Kulemanov
    • 1
  • Yu. N. Parkhomenko
    • 1
  • N. S. Perov
    • 2
  • E. A. Gan’shina
    • 2
  • V. T. Bublik
    • 3
  • K. D. Shcherbachev
    • 3
  • A. V. Kartavykh
    • 4
  • V. I. Vdovin
    • 4
  • A. Sapelkin
    • 5
  • V. V. Saraikin
    • 6
  • Yu. A. Agafonov
    • 7
  • V. I. Zinenko
    • 7
  • A. Rogalev
    • 8
  • A. Smekhova
    • 8
  1. 1.State Institute for Rare MetalsMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Moscow Institute of Steel and AlloysMoscowRussia
  4. 4.Institute for Chemical Problems of MicroelectronicsMoscowRussia
  5. 5.Queen Mary University of LondonLondonUK
  6. 6.State Research Institute of Physical ProblemsZelenograd, Moscow oblastRussia
  7. 7.Institute of Microelectronics Technology and High Purity MaterialsChernogolovka, Moscow oblastRussia
  8. 8.European Synchrotron Radiation FacilityGrenoble Cedex 9France

Personalised recommendations