Journal of Experimental and Theoretical Physics

, Volume 109, Issue 2, pp 286–292 | Cite as

Elusive s-f intrasite interactions and double exchange in solids: Ferromagnetic versus nonmagnetic ground state

Electronic Properties of Solid


From the theory of many-electron states in atoms, we know that there exists a strong Coulomb repulsion, which results in the electronic term structure of atoms and is responsible for Hund’s rules. By expanding the Coulomb on-site repulsion into a multipolar series, we derive this interaction and show that it is also present in solids as a correlation effect, which means that the interaction requires a multideterminant version of the Hartree-Fock method. Of particular interest is the case where this interaction couples states of localized (f) and delocalized (s) electrons. We show that the interaction is bilinear in the creation/annihilation operators for localized electrons and bilinear in the operators for conduction electrons. To study the coupling, we consider a simple model in the framework of an effective limited configuration interaction method with one localized f-electron and one itinerant s-electron per crystal site. The on-site multipole interaction between the f- and s-electrons is explicitly taken into account. It is shown that depending on the low-lying excitation spectrum imposed by the crystal electric field, the model can lead not only to ferromagnetism but also to a nonmagnetic state. The model is relevant for solids with localized and itinerant electron states.

PACS numbers

71.10.Li 75.10.Dg 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Fulde, Electron Correlations in Molecules and Solids (Springer, Heidelberg, 1995).Google Scholar
  2. 2.
    A. V. Nikolaev and K. H. Michel, Phys. Rev. B: Condens. Matter 66, 054 103 (2002).Google Scholar
  3. 3.
    A. V. Nikolaev, Phys. Rev. B: Condens. Matter 71, 165102 (2005).Google Scholar
  4. 4.
    A. V. Nikolaev and K. H. Michel, J. Chem. Phys. 117, 4761 (2002).CrossRefADSGoogle Scholar
  5. 5.
    E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1967).Google Scholar
  6. 6.
    C. Zener, Phys. Rev. 81, 440 (1951); Phys. Rev. 82, 403 (1951).MATHCrossRefADSGoogle Scholar
  7. 7.
    Yu. Ralchenko, A. E. Kramida, J. Reader, et al. (NIST ASD Team), NIST Atomic Spectra Database (Version 3.1.5); [October 6, 2008] (National Institute of Standards and Technology, Gaithersburg, MD, United States, 2008).
  8. 8.
    S. Lebègue, A. Svane, M. I. Katsnelson, A. I. Lichtenstein, and O. Eriksson, Phys. Rev. B: Condens. Matter 74, 045 114 (2006).Google Scholar
  9. 9.
    S. Lebègue, G. Santi, A. Svane, O. Bengone, M. I. Katsnelson, A. I. Lichtenstein, and O. Eriksson, Phys. Rev. B: Condens. Matter 72, 245 102 (2005).Google Scholar
  10. 10.
    A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B: Condens. Matter 57, 6884 (1998).ADSGoogle Scholar
  11. 11.
    D. J. Singh, Planewaves, Pseudopotentials, and the LAPW Method (Kluwer, Boston, MA, United States, 1994).Google Scholar
  12. 12.
    L. L. Hirst, Adv. Phys. 27, 231 (1978).CrossRefADSGoogle Scholar
  13. 13.
    C. J. Bradley and A. P. Cracknell, The Mathematical Theory of Symmetry in Solids (Clarendon, Oxford, 1972).Google Scholar
  14. 14.
    A. V. Nikolaev and P. N. Dyachkov, Int. J. Quantum Chem. 89, 57 (2002).CrossRefGoogle Scholar
  15. 15.
    J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).MATHCrossRefADSGoogle Scholar
  16. 16.
    M. T. Hutchings, in Solid State Physics: Advances in Research and Applications, Ed. by F. Seitz and D. Turnbull (Academic, New York, 1964), Vol. 16, p. 227.Google Scholar
  17. 17.
    J. Mulak and Z. Gajek, The Effective Crystal Field Potential (Elsevier, Amsterdam, 2000).Google Scholar
  18. 18.
    D. J. Newman, Adv. Phys. 20, 197 (1971); D. J. Newman, J. Phys. F: Met. Phys. 13, 1511 (1983).CrossRefADSGoogle Scholar
  19. 19.
    K. W. H. Stevens, Proc. Phys. Soc., London, Sect. A 65, 209 (1952).MATHCrossRefADSGoogle Scholar
  20. 20.
    P. Fulde and M. Loewenhaupt, Adv. Phys. 34, 589 (1986).CrossRefADSGoogle Scholar
  21. 21.
    G. A. Gehring and K. A. Gehring, Rep. Prog. Phys. 38, 1 (1975).CrossRefADSGoogle Scholar
  22. 22.
    R. M. Lynden-Bell and K. H. Michel, Rev. Mod. Phys. 66, 721 (1994).CrossRefADSGoogle Scholar
  23. 23.
    P. Wachter, in Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner, Jr., L. Eyring, G. H. Lander, and G. R. Choppin (Elsevier, Amsterdam, 1994), Vol. 19, p. 177.Google Scholar
  24. 24.
    D. C. Koskenmaki and K. A. Gschneidner, Jr., in Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner, Jr. and L. Eyring (North-Holland, Amsterdam, 1978), p. 337.Google Scholar
  25. 25.
    J. L. Sarrao, Physica B (Amsterdam) 259–261, 128 (1999).Google Scholar
  26. 26.
    J. A. Paixão, C. Detlefs, M. J. Longfield, R. Caciuffo, P. Santini, N. Bernhoeft, J. Rabizant, and G. H. Lander, Phys. Rev. Lett. 89, 187 202 (2002).Google Scholar
  27. 27.
    L. Forró and L. Mihály, Rep. Prog. Phys. 64, 649 (2001).CrossRefADSGoogle Scholar
  28. 28.
    P. W. Anderson, Phys. Rev. 124, 41 (1961).CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954); T. Kasuya, Prog. Theor. Phys. 16, 45 (1956); K. Yosida, Phys. Rev. 106, 893 (1957); J. H. Van Vleck, Rev. Mod. Phys. 34, 681 (1962).CrossRefADSGoogle Scholar
  30. 30.
    O. Eriksson, M. S. S. Brooks, and B. Johansson, Phys. Rev. B: Condens. Matter 41, 7311 (1990).ADSGoogle Scholar
  31. 31.
    S. V. Beiden, W. M. Temmerman, Z. Szotek, and G. A. Gehring, Phys. Rev. Lett. 79, 3970 (1997).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Physical Chemistry of Russian Academy of ScienceMoscowRussia
  2. 2.Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  3. 3.University of AntwerpAntwerpBelgium

Personalised recommendations