Advertisement

Another solution of 2D Ising model

  • S. N. VergelesEmail author
Statistical, Nonlinear, and Soft Matter Physics

Abstract

The partition function of the Ising model on a two-dimensional regular lattice is calculated by using the matrix representation of a Clifford algebra (the Dirac algebra), with number of generators equal to the number of lattice sites. It is shown that the partition function over all loops in a 2D lattice including self-intersecting ones is the trace of a polynomial in terms of Dirac matrices. The polynomial is an element of the rotation group in the spinor representation. Thus, the partition function is a function of a character on an orthogonal group of a high degree in the spinor representation.

PACS numbers

05.50.+q 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Onsager, Phys. Rev. 65, 117 (1944).zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    B. Kaufmann, Phys. Rev. 76, 1232 (1949).CrossRefADSGoogle Scholar
  3. 3.
    R. J. Baxter, Ann. Phys. (San Diego, CA) 70, 193 (1972).zbMATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys. 36, 856 (1964).CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    M. J. Stephen and L. Mittag, J. Math. Phys. 13, 1944 (1972).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    C. J. Thompson, J. Math. Phys. 6, 1392 (1965).CrossRefADSGoogle Scholar
  7. 7.
    M. Kac and J. C. Ward, Phys. Rev. 88, 1332 (1952).zbMATHCrossRefADSGoogle Scholar
  8. 8.
    C. A. Hurst and H. S. Green, J. Chem. Phys. 33, 1059 (1960).CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    P. W. Kasteleyn, J. Math. Phys. 4, 287 (1963).CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    N. V. Vdovichenko, Zh. Éksp. Teor. Fiz. 47, 715 (1964) [Sov. Phys. JETP 20, 477 (1964)]; L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Butterworth-Heinemann, Oxford, 1980), Part 1, Paragraph 151.Google Scholar
  11. 11.
    R. J. Baxter and I. J. Enting, J. Phys. A: Math. Gen. 11, 2463 (1978).CrossRefADSGoogle Scholar
  12. 12.
    R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, London, 1982).zbMATHGoogle Scholar
  13. 13.
    P. A. M. Dirac, Spinors in Hilbert Space (Plenum, New York, 1974).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia

Personalised recommendations