Advertisement

Anomalies of magnetoresistance of compounds with atomic clusters RB12 (R = Ho, Er, Tm, Lu)

  • N. E. Sluchanko
  • A. V. Bogach
  • V. V. Glushkov
  • S. V. Demishev
  • N. A. Samarin
  • D. N. Sluchanko
  • A. V. Dukhnenko
  • A. V. Levchenko
Electronic Properties of Solids

Abstract

The magnetoresistance and magnetization of single-crystal samples of rare-earth dodecaborides RB12 (R = Ho, Er, Tm, Lu) have been measured at low temperatures (1.8–35 K) in a magnetic field of up to 70 kOe. The effect of positive magnetoresistance that obeys the Kohler’s rule Δρ/ρ = f(ρ(0, 300 K)H/ρ(0, T)) is observed for the nonmagnetic metal LuB12. In the magnetic dodecaborides HoB12, ErB12, and TmB12, three characteristic regimes of the magnetoresistance behavior have been revealed: the positive magnetoresistance effect similar to the case of LuB12 is observed at T > 25 K; in the range T N T ≤ 15 K, the magnetoresistance becomes negative and depends quadratically on the external magnetic field; and, finally, upon the transition to the antiferromagnetic phase (T < T N ), the positive magnetoresistance is again observed and its amplitude reaches 150% for HoB12. It has been shown that the observed anomalies of negative magnetoresistance in the paramagnetic phase can be explained within the Yosida model of conduction electron scattering by localized magnetic moments. The performed analysis confirms the formation of spin-polaron states in the 5d band in the vicinity of rare-earth ions in paramagnetic and magnetically ordered phases of RB12 and makes it possible to reveal a number of specific features in the transformation of the magnetic structure of the compounds under investigation.

PACS numbers

72.15.Gd 72.15.Qm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Gabani, I. Bat’ko, K. Flachbart, T. Herrmannsdorfer, R. Konig, Yu. Paderno, and N. Shitsevalova, J. Magn. Magn. Mater. 207, 131 (1999).CrossRefADSGoogle Scholar
  2. 2.
    T. Mori and A. Leithe-Jasper, Phys. Rev. B: Condens. Matter 66, 214419 (2002).Google Scholar
  3. 3.
    A. Kohout, I. Bat’ko, A. Czopnik, K. Flachbart, S. Matas, M. Meissner, Yu. Paderno, N. Shitsevalova, and K. Siemensmeyer, Phys. Rev. B: Condens. Matter 70, 224416 (2004).Google Scholar
  4. 4.
    A. Czopnik, N. Shitsevalova, A. Krivchikov, V. Pluzhnikov, Yu. Paderno, and Y. Onuki, J. Solid State Chem. 177, 507 (2004).CrossRefADSGoogle Scholar
  5. 5.
    F. Iga, Y. Takakuwa, T. Takahashi, M. Kasaya, T. Kasuya, and T. Sagawa, Solid State Commun. 50, 903 (1984).CrossRefADSGoogle Scholar
  6. 6.
    B. Gorshunov, P. Haas, O. Ushakov, M. Dressel, and F. Iga, Phys. Rev. B: Condens. Matter 73, 145207 (2006).Google Scholar
  7. 7.
    K. Flachbart, S. Gabani, K. Gloos, M. Meissner, M. Opel, Y. Paderno, V. Pavlik, P. Samuely, E. Schuberth, N. Shitsevalova, K. Siemensmeyer, and P. Szabo, J. Low Temp. Phys. 140, 339 (2005).CrossRefADSGoogle Scholar
  8. 8.
    M. Heinecke, K. Winzer, J. Noffke, H. Kranefeld, H. Grieb, K. Flachbart, and Yu. Paderno, Z. Phys. B: Condens. Matter 98, 231 (1995).CrossRefADSGoogle Scholar
  9. 9.
    N. Okuda, T. Suzuki, I. Ishii, S. Hiura, F. Iga, T. Takabatake, T. Fujita, H. Kadomatsu, and H. Harima, Physica B (Amsterdam) 281–282, 756 (2000).Google Scholar
  10. 10.
    B. Jäger, S. Paluch, O. J. Źogał, W. Wolf, P. Herzig, V. B. Filippov, N. Shitsevalova, and Yu. Paderno, J. Phys.: Condens. Matter 18, 2525 (2006).CrossRefADSGoogle Scholar
  11. 11.
    N. Sluchanko, L. Bogomolov, V. Glushkov, S. Demishev, M. Ignatov, Eu. Khayrullin, N. Samarin, D. Sluchanko, A. Levchenko, N. Shitsevalova, and K. Flachbart, Phys. Status Solidi B 243, R63 (2006).CrossRefADSGoogle Scholar
  12. 12.
    K. Siemensmeyer, K. Flachbart, S. Gabani, S. Mat’as, Y. Paderno, and N. Shitsevalova, J. Solid State Chem. 179, 2748 (2006).CrossRefADSGoogle Scholar
  13. 13.
    K. Siemensmeyer, K. Habicht, Th. Lonkai, S. Mat’as, S. Gabani, N. Shitsevalova, E. Wulf, and K. Flachbart, J. Low Temp. Phys. 146, 581 (2007).CrossRefADSGoogle Scholar
  14. 14.
    G. M. Kalvius, D. R. Noakes, N. Marcano, R. Wäppling, F. Iga, and T. Takabatake, Physica B (Amsterdam) 326(1–4), 398 (2003).ADSGoogle Scholar
  15. 15.
    N. E. Sluchanko, A. V. Bogach, G. S. Burkhanov, O. D. Chistyakov, V. V. Glushkov, S. V. Demishev, N. A. Samarin, and D. N. Sluchanko, Physica B (Amsterdam) 359–361, 308 (2005).Google Scholar
  16. 16.
    N. E. Sluchanko, A. V. Bogach, V. V. Glushkov, S. V. Demishev, V. Yu. Ivanov, M. I. Ignatov, A. V. Kuznetsov, N. A. Samarin, A. V. Semeno, and N. Yu. Shitsevalova, Zh. Éksp. Teor. Fiz. 131(1), 133 (2007) [JETP 104 (1), 120 (2007)].Google Scholar
  17. 17.
    K. Yosida, Phys. Rev. 107, 396 (1957).zbMATHCrossRefADSGoogle Scholar
  18. 18.
    Yu. Paderno, V. Filippov, and N. Shitsevalova, in Boron-Rich Solids, Ed. by D. Emin and T. L. Aselage (American Institute of Physics, Albuquerque, NM, United States, 1991), AIP Conf. Proc. 230, 460 (1991).Google Scholar
  19. 19.
    V. N. Trofimov, Cryogenics 32, 513 (1992).CrossRefGoogle Scholar
  20. 20.
    N. E. Sluchanko, A. V. Bogach, V. V. Glushkov, S. V. Demishev, M. I. Ignatov, N. A. Samarin, G. S. Burkhanov, and O. D. Chistyakov, Zh. Éksp. Teor. Fiz. 125(4), 906 (2004) [JETP 98, (4), 793 (2004)].Google Scholar
  21. 21.
    Y. Paderno, N. Shitsevalova, I. Bat’ko, K. Flachbart, H. Misiorek, J. Mucha, and A. Jezowski, J. Alloys Compd. 219, 215 (1995).CrossRefGoogle Scholar
  22. 22.
    H. Harima, N. Kobayashi, K. Takegahara, and T. Kasuya, J. Magn. Magn. Mater. 52, 367 (1985).CrossRefADSGoogle Scholar
  23. 23.
    A. A. Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow, 1987; North-Holland, Amsterdam, 1988).Google Scholar
  24. 24.
    N. E. Sluchanko, D. N. Sluchanko, V. V. Glushkov, S. V. Demishev, N. A. Samarin, and N. Yu. Shitsevalova, Pis’ma Zh. Éksp. Teor. Fiz. 86(9), 691 (2007) [JETP Lett. 86 (9), 604 (2007)].Google Scholar
  25. 25.
    P. Heller, Phys. Rev. 146, 403 (1966).CrossRefADSGoogle Scholar
  26. 26.
    A. Sabba Stefanescu and P.-J. Becker, J. Phys. C: Solid State Phys. 14, L737 (1981).CrossRefADSGoogle Scholar
  27. 27.
    J. C. Norvell, W. P. Wolf, L. M. Corliss, J. M. Hastings, and R. Nathans, Phys. Rev. 186, 557 (1969).CrossRefADSGoogle Scholar
  28. 28.
    J. Kotzler, W. Scheithe, K. Knorr, and W. B. Yelon, J. Phys. C: Solid State Phys. 9, 1291 (1976).CrossRefADSGoogle Scholar
  29. 29.
    S. Ma, Modern Theory of Critical Phenomena (Benjamin, Reading, MA, United States, 1976; Mir, Moscow, 1980).Google Scholar
  30. 30.
    K. Flachbart, P. Alekseev, G. Grechnev, N. Shitsevalova, K. Siemensmeyer, N. Sluchanko, and O. Zogal, submitted to Rare Earths: Research and Applications (Nova Science, Hauppauge, NY, United States, 2007).Google Scholar
  31. 31.
    A. Czopnik, A. Murasik, L. Keller, N. Shitsevalova, and Yu. Paderno, Phys. Status Solidi B 221, R7 (2000).CrossRefADSGoogle Scholar
  32. 32.
    M. B. Fontes, S. L. Bud’ko, M. A. Continentino, and E. M. Baggio-Saitovitch, Physica B (Amsterdam) 270, 255 (1999).ADSGoogle Scholar
  33. 33.
    B. Chevalier, J. G. Soldevilla, J. I. Espeso, J. R. Fernandez, J. C. Gomez Sal, and J. Etourneau, Physica B (Amsterdam) 259–261, 44 (1999).Google Scholar
  34. 34.
    N. Nakajima, K. Izawa, Y. Matsuda, S. Uji, T. Terashima, H. Shishido, R. Settai, Y. Onuki, and H. Kontani, J. Phys. Soc. Jpn. 73, 5 (2004).CrossRefADSGoogle Scholar
  35. 35.
    N. Nakajima, H. Shishido, H. Nakai, T. Shibauchi, M. Hedo, Y. Uwatoko, T. Matsumoto, R. Settai, Y. Onuki, H. Kontani, and Y. Matsuda, Phys. Rev. B: Condens. Matter 77, 214504 (2008).Google Scholar
  36. 36.
    J. M. Harris, Y. F. Yan, P. Matl, N. P. Ong, P. W. Anderson, T. Kimura, and K. Kitazawa, Phys. Rev. Lett. 75, 1391 (1995).CrossRefADSGoogle Scholar
  37. 37.
    T. Sasaki, A. Lebed’, T. Fukase, and N. Toyota, Phys. Rev. B: Condens. Matter 54, 12969 (1996).ADSGoogle Scholar
  38. 38.
    G. M. Danner, P. M. Chaikin, and S. T. Hannahs, Phys. Rev. B: Condens. Matter 53, 2727 (1996).ADSGoogle Scholar
  39. 39.
    S. Arajs and G. R. Dunmyre, J. Appl. Phys. 36, 3555 (1965).CrossRefADSGoogle Scholar
  40. 40.
    S. Arajs, Phys. Status Solidi 37, 329 (1970).CrossRefGoogle Scholar
  41. 41.
    S. Arajs, G. R. Dunmyre, and S. J. Dechter, Phys. Rev. 154, 448 (1967).CrossRefADSGoogle Scholar
  42. 42.
    G. Montambaux, Phys. Rev. B: Condens. Matter 38, 4788 (1988).ADSGoogle Scholar
  43. 43.
    É. L. Nagaev, Pis’ma Zh. Éksp. Teor. Fiz. 6(1), 484 (1967) [JETP Lett. 6 (1), 18 (1967)].Google Scholar
  44. 44.
    M. Yu. Kagan, K. I. Kugel, and D. I. Khomskii, Zh. Éksp. Teor. Fiz. 120(2), 470 (2001) [JETP 93 (2), 470 (2001)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • N. E. Sluchanko
    • 1
  • A. V. Bogach
    • 1
  • V. V. Glushkov
    • 1
  • S. V. Demishev
    • 1
  • N. A. Samarin
    • 1
  • D. N. Sluchanko
    • 1
  • A. V. Dukhnenko
    • 2
  • A. V. Levchenko
    • 2
  1. 1.A. M. Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.I. N. Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations