Screening of a moving charge in a nonequilibrium plasma

  • A. V. Filippov
  • A. G. Zagorodny
  • A. I. Momot
  • A. F. Pal’
  • A. N. Starostin
Statistical, Nonlinear, and Soft Matter Physics

Abstract

Based on the model of point sinks, we consider the problem on the screening of the charge of a moving macroparticle in a nonequilibrium plasma. The characteristic formation times of the polarization cloud around such a macroparticle have been determined by the method of a three-dimensional integral Fourier transformation in spatial variables and a Laplace transformation in time. The screening effect is shown to be enhanced with increasing macroparticle velocity. We consider the applicability conditions for the model of point sinks and establish that the domain of applicability of the results obtained expands with decreasing gas ionization rate and macroparticle size. We consider the problem of charge screening at low velocities and establish that the stationary potential of the moving charge has a dipole component that becomes dominant at large distances. We show that the direction of the force exerted on the dust particle by the induced charges generally depends on the relationship between the transport and loss coefficients of the plasma particles in a plasma. When the Langevin ion recombination coefficient β iL = 4πeμ i exceeds the electron-ion recombination coefficient β ei , this force will accelerate the dust particles in the presence of sinks. In the absence of sinks or when β ei > β iL , this force will be opposite in direction to the dust particle velocity. We also consider the problem on the energy and force of interaction between a moving charged macroparticle and the induced charges.

PACS numbers

52.27.Lw 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Debye and E. Hückel, Phys. Z. 24, 305 (1923).Google Scholar
  2. 2.
    A. A. Vlasov, Many-Particle Theory and Its Application. to Plasma (Gostekhizdat, Moscow, 1950; Gordon and Breach, New York, 1961).Google Scholar
  3. 3.
    D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    W. B. Thompson and J. Hubbard, Rev. Mod. Phys. 32, 714 (1960).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    D. Montgomery, G. Joyce, and R. Sugihara, Plasma Phys. 10, 681 (1968).CrossRefADSGoogle Scholar
  6. 6.
    G. Cooper, Phys. Fluids 12, 2707 (1969).CrossRefADSGoogle Scholar
  7. 7.
    P. M. Echenique, R. H. Ritchie, and W. Brandt, Phys. Rev. B: Condens. Matter 20, 2567 (1979).ADSGoogle Scholar
  8. 8.
    É. É. Trofimovich and V. P. Kraoenov, Zh. Éksp. Teor. Fiz. 102(1), 71 (1992) [Sov. Phys. JETP 75 (1), 37 (1992).Google Scholar
  9. 9.
    É. É. Trofimovich and V. P. Kraoenov, Zh. Éksp. Teor. Fiz. 104(6), 3971 (1993) [JETP 77 (6), 910 (1993)].Google Scholar
  10. 10.
    A. V. Filippov, A. G. Zagorodny, and A. I. Momot, Pis’ma Zh. Éksp. Teor. Fiz. 88(1), 27 (2008) [JETP Lett. 88 (1), 24 (2007)].Google Scholar
  11. 11.
    A. G. Zagorodny, A. V. Filippov, A. F. Pal’, A. N. Starostin, and A. I. Momot, Zh. Fiz. Dosl. 11(2), 158 (2007).Google Scholar
  12. 12.
    S. V. Khrapak, S. A. Zhdanov, A. V. Ivlev, and G. E. Morfill, J. Appl. Phys. 101, 033307 (2007).Google Scholar
  13. 13.
    S. V. Vladimirov, S. A. Khrapak, M. Chaudhuri, and G. E. Morfill, Phys. Rev. Lett. 100, 055002 (2008).Google Scholar
  14. 14.
    F. Schweitzer, W. Ebeling, and B. Tilch, Phys. Rev. Lett. 80, 5044 (1998).CrossRefADSGoogle Scholar
  15. 15.
    U. Erdmann, W. Ebeling, L. Schimansky-Geier, and F. Schweitzer, Eur. Phys. J. B 15, 105 (2000).CrossRefADSGoogle Scholar
  16. 16.
    S. A. Trigger, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67, 046403 (2003).Google Scholar
  17. 17.
    S. A. Trigger and A. G. Zagorodny, Condens. Matter Phys. 7, 629 (2004).Google Scholar
  18. 18.
    A. V. Filippov, A. G. Zagorodny, A. F. Pal’, and A. N. Starostin, Pis’ma Zh. Éksp. Teor. Fiz. 81(4), 180 (2005) [JETP Lett. 81 (4), 146 (2005)].Google Scholar
  19. 19.
    A. V. Filippov, A. G. Zagorodny, A. I. Momot, A. F. Pal, and A. N. Starostin, Zh. Éksp. Teor. Fiz. 131(1), 164 (2007) [JETP 104 (1), 147 (2007)].Google Scholar
  20. 20.
    A. V. Filippov, N. A. Dyatko, A. F. Pal’, and A. N. Starostin, Fiz. Plazmy (Moscow) 29(3), 214 (2003) [Plasma Phys. Rep. 29 (3), 190 (2003)].Google Scholar
  21. 21.
    H. Bateman and A. Erdélyi, Tables of Integral Transforms (McGraw-Hill, New York, 1954; Nauka, Moscow, 1969), Vol. 1.Google Scholar
  22. 22.
    B. M. Smirnov, Complex Ions (Nauka, Moscow, 1983) [in Russian].Google Scholar
  23. 23.
    B. M. Smirnov, Ions and Excited Atoms in Plasma (Atomizdat, Moscow, 1974) [in Russian].Google Scholar
  24. 24.
    V. A. Ivanov, Usp. Fiz. Nauk 162(1), 35 (1992) [Sov. Phys.-Usp. 35 (1), 37 (2992)].Google Scholar
  25. 25.
    A. V. Filippov, A. G. Zagorodny, A. I. Momot, A. F. Pal’, and A. N. Starostin, Zh. Éksp. Teor. Fiz. 132(4), 949 (2007) [JETP 105 (5), 831 (2007)].Google Scholar
  26. 26.
    A. F. Pal’, A. N. Starostin, and A. V. Filippov, Fiz. Plazmy 27(2), 155 (2001) [Plasma Phys. Rep. 27 (2), 143 (2001)].Google Scholar
  27. 27.
    A. F. Pal’, A. O. Serov, A. N. Starostin, A. V. Filippov, and V. E. Fortov, Zh. Éksp. Teor. Fiz. 119(2), 272 (2001) [JETP 92 (2), 235 (2001)].Google Scholar
  28. 28.
    F. Melandso and J. Goree, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 52, 5312 (1995).Google Scholar
  29. 29.
    S. V. Vladimirov and O. Ishihara, Phys. Plasmas 3, 444 (1996).CrossRefADSGoogle Scholar
  30. 30.
    V. A. Schweigert, I. V. Schweigert, A. Melzer, A. Homann, and A. Piel, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 54, 4155 (1996).Google Scholar
  31. 31.
    A. Melzer, V. A. Schweigert, I. V. Schweigert, A. Homann, S. Peters, and A. Piel, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 54, R46 (1996).Google Scholar
  32. 32.
    M. Lampe, G. Joyce, G. Ganguli, and V. Gavrishchaka, Phys. Plasmas 7, 3851 (2000).CrossRefADSGoogle Scholar
  33. 33.
    A. N. Bogolyubov and V. V. Kravtsov, Problems of. Mathematical Physics (Moscow State University, Moscow, 1998) [in Russian].Google Scholar
  34. 34.
    V. E. Fortov, A. P. Nefedov, O. F. Petrov, A. A. Samarian, and A. V. Chernyschev, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 54, R2236 (1996).Google Scholar
  35. 35.
    A. Zagorodny, O. Bystrenko, T. Bystrenko, A. V. Filippov, A. Momot, A. F. Pal’, and A. N. Starostin, in Proceedings. of the XXVIII International Conference on Phenomena. in Ionized Gases (ICPIG), Prague, Czech. Republic, 2007, p. 26.Google Scholar
  36. 36.
    Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Énergoatomizdat, Moscow, 1991; CRC Press, Boca Raton, FL, United States, 1996).Google Scholar
  37. 37.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical. Physics, Vol 10: Physical Kinetics (Nauka, Moscow, 1979; Butterworth-Heinemann, Oxford, 1984).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. V. Filippov
    • 1
  • A. G. Zagorodny
    • 2
  • A. I. Momot
    • 3
  • A. F. Pal’
    • 1
  • A. N. Starostin
    • 1
  1. 1.Troitsk Institute for Innovation and Fusion ResearchTroisk, Moscow oblastRussia
  2. 2.Bogolyubov Institute for Theoretical PhysicsNational Academy of Sciences of UkraineKievUkraine
  3. 3.Taras Shevchenko Kiev National UniversityKievUkraine

Personalised recommendations