Liquid-crystalline phases formed by DNA duplexes containing pyrophosphate groups

  • Yu. S. Volkov
  • V. L. Golo
  • E. I. Kats
  • S. A. Kuznetsova
Tatistical, Nonlinear, and Soft Matter Physics


We have studied the interaction between synthetic DNA molecules containing pyrophosphate (PP) groups in various positions, which makes it possible to control the charge distribution along the DNA chain. The PP groups were either symmetrically arranged at the ends or at the center of DNA molecules or uniformly distributed along these molecules. It is shown that, similar to nonmodified DNA, the synthetic PP-modified DNA molecules can form cholesteric liquid crystals. Minima of the pair interaction potential are found, conditions of the symmetry of this potential are formulated, and the dependence of conformation angles on the effective charge is determined. The results of calculations show that the system exhibits polymorphism (i.e., several phases of cholesteric liquid crystals can exist in DNA solutions).

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Onsager, Ann. N. Y. Acad. Sci. 51, 621 (1999).Google Scholar
  2. 2.
    S. Chandrasekhar, Liquid Crystals (Cambridge University Press, Cambridge, 1977).Google Scholar
  3. 3.
    C. Robinson, Tetrahedron 13, 219 (1961).CrossRefGoogle Scholar
  4. 4.
    F. Livolant, J. Phys. (Paris) 47, 1605 (1986).Google Scholar
  5. 5.
    E. Raspaud, D. Durand, and F. Livolant, Biophys. J. 88, 392 (2004).CrossRefGoogle Scholar
  6. 6.
    E. Raspaud, J. Pelta, M. de Fruttos, and F. Livolant, Phys. Rev. Lett. 97, 068103-1 (2006).Google Scholar
  7. 7.
    Y. H. Kim, J. Phys. (Paris) 43, 559 (1982).Google Scholar
  8. 8.
    B. Samoroe, M. Osipov, I. Domini, and A. Bartolini, Int. J. Macromol. 15, 353 (1993).CrossRefGoogle Scholar
  9. 9.
    V. L. Golo, E. I. Kats, and I. P. Kikot’, Pis’ma Zh. Éksp. Teor. Fiz. 84(5), 334 (2006) [JETP Lett. 84 (5), 275 (2006)].Google Scholar
  10. 10.
    A. A. Kornyshev and S. Leikin, J. Chem. Phys. 107, 3656 (1997).CrossRefADSGoogle Scholar
  11. 11.
    V. L. Golo, E. I. Kats, and Yu. S. Volkov, Pis’ma Zh. Éksp. Teor. Fiz. 86(4), 311 (2007) [JETP Lett. 86 (4), 278 (278)].Google Scholar
  12. 12.
    S. A. Kuznetsova, M. G. Ivanovskaya, and Z. A. Shabarova, Bioorg. Khim. 16, 219 (1990).Google Scholar
  13. 13.
    S. A. Kuznetsova, I. É. Kanevskiĭ, V. A. Florent’ev, A. D. Mirzabekov, and Z. A. Shabarova, Mol. Biol. (Moscow) 28, 290 (1994).Google Scholar
  14. 14.
    S. A. Kuznetsova, M. Blumenfeld, M. Vasseur, and Z. A. Shabarova, Nucleosides Nucleotides 18, 1237 (1996).CrossRefGoogle Scholar
  15. 15.
    S. A. Kuznetsova, I. E. Kanevskii, T. S. Oretskaya, and Z. A. Shabarova, Bioorg. Khim. 22(7), 532 (1996) [Russ. J. Bioorg. Chem. 22 (7), 455 (1996)].Google Scholar
  16. 16.
    A. A. Purmal’, V. L. Drutsa, and Z. A. Shabarova, Bioorg. Khim. 10, 394 (1984).Google Scholar
  17. 17.
    M. V. Rogacheva, A. V. Bochenkova, S. A. Kuznetsova, M. K. Saparbaev, and A. V. Nemukhin, J. Phys. Chem. B. 111, 432 (2007).CrossRefGoogle Scholar
  18. 18.
    Z. A. Shabarova, G. Ya. Sheflyan, S. A. Kuznetsova, E. A. Kubareva, O. N. Sysoev, M. G. Ivanovskaya, and E. S. Gromova, Bioorg. Khim. 20, 413 (1994).Google Scholar
  19. 19.
    M. V. Rogacheva, M. K. Saparbaev, I. M. Afanasov, and S. A. Kuznetsova, Biochimie 87, 1079 (2005).CrossRefGoogle Scholar
  20. 20.
    M. Rogacheva, A. Ishchenko, M. Saparbaev, S. Kuznetsova, and V. Ogryzko, J. Biol. Chem. 281,32 353 (2006).Google Scholar
  21. 21.
    S. A. Kuznetsova, C. Clusel, E. Ugarte, I. Elias, M. Vasseur, M. Blumenfeld, and Z. A. Shabarova, Nucleic Acids Res. 24, 4783 (1996).CrossRefGoogle Scholar
  22. 22.
    A. A. Purmal, Z. A. Shabarova, and R. I. Gumport, Nucleic Acids Res. 20, 3713 (1992).CrossRefGoogle Scholar
  23. 23.
    G. Ya. Sheflyan, E. A. Kubareva, S. A. Kuznetsova, A. S. Karyagina, I. I. Nikol’skaya, E. S. Gromova, and Z. A. Shabarova, FEBS Lett. 390, 307 (1996).CrossRefGoogle Scholar
  24. 24.
    E. A. Kubareva, O. A. Fedorova, M. B. Gottikh, H. Tanaka, C. Malvy, and Z. A. Shabarova, FEBS Lett. 381, 35 (1996).CrossRefGoogle Scholar
  25. 25.
    L. Berti, A. Alessandrini, C. Menozzi, and P. Facci, J. Nanosci. Nanotechnol. 6(8), 2382 (2006).CrossRefGoogle Scholar
  26. 26.
    J. Sponer, J. Leszcynski, and P. Hobza, Biopolymers 61, 3 (2002).CrossRefGoogle Scholar
  27. 27.
    O. Punkkinen, A. Naji, R. Podgornik, I. Vattulainen, and P.-L. Hansen, Europhys. Lett. 82, 48001 (2008).Google Scholar
  28. 28.
    J. S. Schwinger, L. L. Deraad, K. A. Milton, and W. Y. Tsai, Classical Electrodynamics (Perseus, London, 1998).Google Scholar
  29. 29.
    Yu. M. Evdokimov, Zhidk. Krist. 3, 10 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • Yu. S. Volkov
    • 1
  • V. L. Golo
    • 1
  • E. I. Kats
    • 2
  • S. A. Kuznetsova
    • 3
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of Sciences ChernogolovkaMoscow oblastRussia
  3. 3.Institut Laue-LangevinGrenobleFrance

Personalised recommendations