Conversion of dark matter axions to photons in magnetospheres of neutron stars

  • M. S. Pshirkov
  • S. B. Popov
Nuclei, Particles, Fields, Gravitation, and Astrophysics


We propose a new method to detect observational appearance of dark matter axions. The method utilizes radio observations of neutron stars. It is based on the conversion of axions to photons in strong magnetic fields of neutron stars (the Primakoff effect). If the conversion occurs, the radio spectrum of the object has a very distinctive feature—a narrow spike at the frequency corresponding to the rest mass of the axion. For example, if the coupling constant of the photon-axion interaction is M = 1010 GeV, the density of dark matter axions is ρ = 10−24 g cm−3 and the axion mass is 5 μeV; then the flux from a strongly magnetized (1014 G) neutron star at the distance 300 pc from the Sun is expected to be about few tenths of millijansky at a frequency of about 1200 MHz in a bandwidth of about 3 MHz. Close-by X-ray dim isolated neutron stars are proposed as good candidates to look for such radio emission.

PACS numbers

14.80.Mz 95.35.+d 97.60.Gb 95.85.Bh 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. J. E. Peebles, Int. J. Mod. Phys. A 16, 4223 (2001).CrossRefADSGoogle Scholar
  2. 2.
    M. Kamionkowski, submitted for publication in Visions of Discovery (in Honor of Charles Townes), to be published by Cambridge University; arXiv:0706.2986.Google Scholar
  3. 3.
    R. D. Peccei and H. R. Quinn, Phys. Rev. D: Part. Fields 16, 1791 (1977).ADSGoogle Scholar
  4. 4.
    H. Primakoff, Phys. Rev. 81, 899 (1951).CrossRefADSGoogle Scholar
  5. 5.
    C. Eleftheriadis et al. (CAST Collab.) arXiv:astroph/ 0305534v1.Google Scholar
  6. 6.
    Y. Inoue, T. Namba, S. Moriyama, M. Minowa, Y. Takasu, T. Horiuchi, and A. Yamamoto, Phys. Lett. B 536, 18 (2002).CrossRefADSGoogle Scholar
  7. 7.
    K. Zioutas, D. J. Thompson, and E. A. Paschos, Phys. Lett. B 443, 201 (1998).CrossRefADSGoogle Scholar
  8. 8.
    H. Davoudiasl and P. Huber, Phys. Rev. Lett. 97, 141 302 (2006).Google Scholar
  9. 9.
    L. Duffy, P. Sikivie, D. B. Tanner, S. Asztalos, C. Hagmann, D. Kinion, L. J. Rosenberg, K. van Bibber, D. Yu, and R. F. Bradley, Phys. Rev. Lett. 95, 091 304 (2005).Google Scholar
  10. 10.
    Yu. N. Gnedin and S. V. Krasnikov, Zh. Eksp. Teor. Fiz. 102(6), 1729 (1992) [Sov. Phys. JETP 75 (6), 933 (1992)].ADSGoogle Scholar
  11. 11.
    Yu. N. Gnedin, Astron. Astrophys. Trans. 5, 163 (1994).CrossRefADSGoogle Scholar
  12. 12.
    P. Sikivie, arXiv:hep-ph/0606014.Google Scholar
  13. 13.
    M. Yu. Khlopov, A. S. Sakharov, and D. D. Sokoloff, Nucl. Phys. B, Proc. Suppl. 72, 105 (1999).CrossRefADSGoogle Scholar
  14. 14.
    P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983).CrossRefADSGoogle Scholar
  15. 15.
    N. Rea, S. Zane, R. Turolla, M. Lyutikov, and D. Götz, AIP Conf. Proc. 983, 292 (2008).CrossRefADSGoogle Scholar
  16. 16.
    D. Götz, S. Mereghetti, A. Tiengo, and P. Esposito, Astron. Astrophys. 449, L31 (2006).CrossRefADSGoogle Scholar
  17. 17.
    P. Goldreich and W. H. Julian, Astrophys. J. 157, 869 (1969).CrossRefADSGoogle Scholar
  18. 18.
    S. B. Popov, Phys. Part. Nucl. 39, 1130 (2008); arXiv:astro-ph/0610593.CrossRefGoogle Scholar
  19. 19.
    B. Posselt, S. B. Popov, F. Haberl, J. Truemper, R. Turolla, and R. Neuhaeuser, Astrophys. Space Sci. 306, 171 (2007).CrossRefADSGoogle Scholar
  20. 20.
    M. H. van Kerkwijk and D. L. Kaplan, Astrophys. J. 673, L163 (2008).CrossRefADSGoogle Scholar
  21. 21.
    M. Lyutikov, arXiv:0708.1024.Google Scholar
  22. 22.
    I. Goldman and S. Nussinov, Phys. Rev. D: Part. Fields 40, 3221 (1989).ADSGoogle Scholar
  23. 23.
    V. I. Kondratiev, M. Burgay, A. Possenti, M. A. McLaughlin, D. R. Lorimer, R. Turolla, S. Popov, and S. Zane, arXiv:0710.1648.Google Scholar
  24. 24.
    V. M. Malofeev, O. I. Malov, and D. A. Teplykh, Astrophys. Space Sci. 308, 211 (2007).CrossRefADSGoogle Scholar
  25. 25.
    B. C. Joshi et al., poster at COSPAR-2008 (work in progress).Google Scholar
  26. 26.
    B. W. Stappers, A. G. J. van Leeuwen, M. Kramer, M. Kramer, D. Stinebring, and J. Hessels, arXiv:astroph/0701229.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Pushchino Radio Astronomy Observatory, Astro Space Centre, Lebedev Physics InstituteRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations