Advertisement

Journal of Experimental and Theoretical Physics

, Volume 108, Issue 1, pp 159–175 | Cite as

Multicomponent loschmidt echo and mixing in the quantum dynamics of systems with dense discrete spectra

  • V. A. Benderskii
  • L. N. Gak
  • E. I. Kats
Statistical, Nonlinear, and Soft Matter Physics

Abstract

A dynamic problem for a system coupled to a reservoir possessing a dense discrete spectrum of states has been analytically solved under two simplifying assumptions proposed by Zwanzig [15], according to which the reservoir spectrum is equidistant and all the system-reservoir coupling matrix elements are identical (i.e., independent of reservoir states). It is demonstrated that a multicomponent Loschmidt echo arises in each recurrence cycles, the number of components being equal to the cycle number. At a certain critical cycle number, the components of neighboring cycles exhibit mixing. As a result, the dynamics of the system transforms from a regular to stochastic-like dynamics, in which an arbitrarily small coarse graining (inherent in any real system) of the results of measurements or uncertainty in the initial conditions leads to (i) the loss of one-to-one correspondence between the discrete spectrum of eigenvalues and the state of the system and (ii) the loss of invariance with respect to the time reversal. Interrelation between the mixing of cycles with the entanglement of trajectories, on the one hand, and the overlap of resonances in classical systems with mixing, on the other hand, is discussed. The properties of the proposed model are consistent with a variety of the kinetic regimes of vibrational relaxation (from exponential decay to irregular, weakly damping oscillations) observed in various objects. Common features are average distances between neighboring levels on the order of 1–10 cm−1 and recurrence cycles on a time scale of 10–13–10−11 s, which is studied using femtosecond spectroscopy techniques.

PACS numbers

03.65.Ta 03.65.Vf 03.65.Yz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Schinke, Photodissociation Dynamics (Cambridge University Press, Cambridge, 1994).Google Scholar
  2. 2.
    M. Joeux, S. C. Farantos, and R. Schinke, J. Phys. Chem. A 106, 5407 (2002).CrossRefGoogle Scholar
  3. 3.
    M. Ben-Nun and T. J. Martinez, Chem. Phys. Lett. 298,57 (1998).CrossRefADSGoogle Scholar
  4. 4.
    T. Vreven, F. Bernardi, M. Caravelli, M. Olivucci, M. Robb, and H. B. Schlegel, J. Am. Chem. Soc. 119, 1267 (1997).CrossRefGoogle Scholar
  5. 5.
    M. Ben-Nun, F. Molnar, H. Lu, J. C. Phillips, T. J. Martinez, and K. Schulten, Faraday Discuss. 110, 447 (1998).CrossRefGoogle Scholar
  6. 6.
    S. Hayashi, E. Tajkhorshid, and K. Schulten, Biophys. J. 85, 1440 (2003).CrossRefGoogle Scholar
  7. 7.
    C. J. Fesko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler, Science (Washington) 301, 1698 (2003).CrossRefADSGoogle Scholar
  8. 8.
    A. V. Benderskii and K. B. Eisenthal, J. Phys. Chem. A 106, 7482 (2002).CrossRefGoogle Scholar
  9. 9.
    A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and M. Zwerger, Rev. Mod. Phys. 59, 1 (1987).CrossRefADSGoogle Scholar
  10. 10.
    U. Weiss, Quantum Dissipative Systems (World Sci., Singapore, 1999).MATHGoogle Scholar
  11. 11.
    V. A. Benderskii, D. E. Makarov, and C. A. Wight, Chemical Dynamics at Low Temperatures (Wiley, New York, 1994).Google Scholar
  12. 12.
    L. H. Yu and C. P. Sun, Phys. Rev. A: At., Mol., Opt. Phys. 49, 592 (1994).ADSGoogle Scholar
  13. 13.
    S. Roy and B. Bagchi, J. Chem. Phys. 99, 9938 (1993).CrossRefGoogle Scholar
  14. 14.
    V. A. Benderskii, L. A. Falkovsky, and E. I. Kats, Pis’ma Zh. Éksp. Teor. Fiz. 86(3), 249 (2007) [JETP Lett. 86 (3), 221 (2007)].Google Scholar
  15. 15.
    R. Zwanzig, Lect. Notes Theor. Phys. 3, 106 (1960).Google Scholar
  16. 16.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, NJ, United States, 1955).MATHGoogle Scholar
  17. 17.
    E. P. Wigner, SIAM Rev. 9, 1 (1967).MATHCrossRefGoogle Scholar
  18. 18.
    F. J. Dyson, J. Math. Phys. 3, 140, 157, 166, 1191, 1199 (1962).CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    O. Bohigas, S. Tomsovic, and D. Ulmo, Phys. Rep. 223, 43 (1993).CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    V. K. B. Kota, Phys. Rep. 347, 223 (2001).MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    T. Papenbrock and H. A. Weidenmuller, Rev. Mod. Phys. 79, 997 (2007).CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    M. L. Mehta, Random Matrices (Academic, New York, 1968).Google Scholar
  23. 23.
    R. C. Snyder, J. Mol. Spectrosc. 4, 411 (1960).CrossRefADSGoogle Scholar
  24. 24.
    T. Ishioka, W. Yan, H. L. Strauss, and R. G. Snyder, Spectrochim. Acta, Part A 59, 671 (2003).CrossRefGoogle Scholar
  25. 25.
    K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, J. Chem. Phys. 121, 8671 (2004).CrossRefADSGoogle Scholar
  26. 26.
    S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, Nanotechnology 15, S495 (2004).CrossRefADSGoogle Scholar
  27. 27.
    V. Schettino, H. Prigolini, and G. Cardini, J. Phys. Chem. A 106, 1815 (2002).CrossRefGoogle Scholar
  28. 28.
    O. P. Charkin, N. M. Klimenko, D. O. Charkin, A. M. Mebel, and S. H. Lin, Russ. J. Inorg. Chem. 51(Suppl. 1), S1 (2006).CrossRefGoogle Scholar
  29. 29.
    B. V. Chirikov, Phys. Rep. 52, 263 (1979).CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    G. M. Zaslavsky, Chaos in Dynamic Systems (Harwood, New York, 1985).Google Scholar
  31. 31.
    M. V. Berry, in Chaotic Behavior in Deterministic Systems, Ed. by G. Cassati (Plenum, New York, 1985).Google Scholar
  32. 32.
    F. Haake, Quantum Signatures of Chaos (Springer, Berlin, 1990).Google Scholar
  33. 33.
    F. M. Izrailev, Phys. Rep. 196, 299 (1990).CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    W. Weisskopf and E. Wigner, Z. Phys. 63, 54 (1930).CrossRefGoogle Scholar
  35. 35.
    M. Bixon and J. Jortner, Mol. Phys. 17, 109 (1969).CrossRefADSGoogle Scholar
  36. 36.
    H. Bateman and A. Erdelyi, Higher Transcendental Functions (McGraw Hill, New York, 1953), Vol. 2.Google Scholar
  37. 37.
  38. 38.
    Ya. B. Zel’dovich, Zh. Éksp. Teor. Fiz. 39, 776 (1960) [Sov. Phys. JETP 12, 542 (1960)].Google Scholar
  39. 39.
    I. Prigogine and T. Y. Petrovsky, Adv. Chem. Phys. 99, 1 (1997); Resonances, Instability, and Irreversibility, Ed. by I. Prigogine and S. A. Rice (Wiley, New York, 1985).Google Scholar
  40. 40.
    W. H. Zurek, Phys. Rev. D: Part. Fields 26, 1862 (1982).ADSMathSciNetGoogle Scholar
  41. 41.
    V. A. Benderskii and E. I. Kats, Phys. Rev. E 65, 036217 (2002).Google Scholar
  42. 42.
    M. Tabor, Chaos and Integrability in Nonlinear Dynamics (Wiley, New York, 1989).MATHGoogle Scholar
  43. 43.
    M. E. Flatte and M. Holthaus, Ann. Phys. (San Diego, CA) 245, 299 (1996).Google Scholar
  44. 44.
    Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).MATHCrossRefADSMathSciNetGoogle Scholar
  45. 45.
    M. V. Berry, in Geometric Phase in Physics, Ed. by A. Shapere and F. Wilczek (World Sci., Singapore, 1991).Google Scholar
  46. 46.
    Ya. G. Sinai, Introduction to Ergodic Theory (Princeton University Press, Princeton, 1977).Google Scholar
  47. 47.
    A. M. Vershik, I. P. Kornfeld, and Ya. G. Sinai, Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat. Fundam. Napravleniya 2, 5 (1985).MathSciNetGoogle Scholar
  48. 48.
    S. Luzzatto, arXiv:math.DS/0409085.Google Scholar
  49. 49.
    G. W. Stroke, An Introduction to Coherent Optics and Holography (Academic, New York, 1966).Google Scholar
  50. 50.
    P. Grigolini, Quantum Mechanical Irreversibility (World Sci., Singapore, 1993).Google Scholar
  51. 51.
    G. P. Berman and G. M. Zaslavsky, Phys. Lett. A 61, 295 (1977).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Institut Laue-LangevinGrenoble, Cedex 9France

Personalised recommendations