Advertisement

Journal of Experimental and Theoretical Physics

, Volume 108, Issue 1, pp 121–125 | Cite as

Coulomb correlation effects in LaFeAsO: An LDA + DMFT(QMC) study

  • A. O. Shorikov
  • M. A. KorotinEmail author
  • S. V. Streltsov
  • S. L. Skornyakov
  • Dm. M. Korotin
  • V. I. Anisimov
Electronic Properties of Solids

Abstract

Effects of Coulomb correlation on the LaFeAsO electronic structure are investigated by the LDA + DMFT(QMC) method (combination of the local density approximation with the dynamic mean-field theory; impurity solver is a quantum Monte Carlo algorithm). The calculation results show that LaFeAsO is in the regime of intermediate correlation strength with a significant part of the spectral density moved from the Fermi energy to the Hubbard bands and far from the edge of the metal-insulator transition. Correlations affect iron d-orbitals differently. The t 2g states (xz, yz and x 2y 2 orbitals) have a higher energy due to crystal field splitting and are nearly half-filled. Their spectral functions have a pseudogap with the Fermi level position on the higher subband slope. The lower energy e g set (xy and 3z 2r 2 orbitals) have occupancies significantly larger than 1/2 with typically metallic spectral functions.

PACS numbers

74.25.Jb 71.27.+a 71.30.+h 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Kamihara, T. Watanabe, M. Hirano, and Hideo Hosono, J. Am. Chem. Soc. 130, 3296 (2008).CrossRefGoogle Scholar
  2. 2.
    L. Boeri, O. V. Dolgov, and A. A. Golubov, Phys. Rev. Lett. 101, 026403 (2008).Google Scholar
  3. 3.
    K. Haule, J. H. Shim, and G. Kotliar, Phys. Rev. Lett. 100, 226402 (2008).Google Scholar
  4. 4.
    O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).CrossRefADSGoogle Scholar
  5. 5.
    D. J. Singh and M.-H. Du, Phys. Rev. Lett. 100, 237003 (2008).Google Scholar
  6. 6.
    N. Marzari and D. Vanderbilt, Phys. Rev. B: Condens. Matter 56, 12 847 (1997).Google Scholar
  7. 7.
    V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A. Nekrasov, Z. V. Pchelkina, J. W. Allen, S.-K. Mo, H.-D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren, and D. Vollhardt, Phys. Rev. B: Condens. Matter 71, 125 119 (2005).Google Scholar
  8. 8.
    V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G. Kotliar, J. Phys.: Condens. Matter 9, 7359 (1997); A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B: Condens. Matter 57, 6884 (1998); K. Held, I. A. Nekrasov, G. Keller, V. Eyert, N. Blümer, A. K. McMahan, R. T. Scalettar, Th. Pruschke, V. I. Anisimov, and D. Vollhardt, Phys. Status Solidi B 243, 2599 (2006).CrossRefADSGoogle Scholar
  9. 9.
    J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986).CrossRefADSGoogle Scholar
  10. 10.
    D. E. Kondakov, I. A. Nekrasov, M. Sigrist, T. M. Rice, and V. I. Anisimov, Eur. Phys. J. B 25, 191 (2002).ADSGoogle Scholar
  11. 11.
    J. E. Han, M. Jarrell, and D. L. Cox, Phys. Rev. B: Condens. Matter 58, R4199 (1998).Google Scholar
  12. 12.
    K. Haule and G. Kotliar, arXiv:0805.0722.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. O. Shorikov
    • 1
  • M. A. Korotin
    • 1
    Email author
  • S. V. Streltsov
    • 1
  • S. L. Skornyakov
    • 2
  • Dm. M. Korotin
    • 1
  • V. I. Anisimov
    • 1
  1. 1.Institute of Metal PhysicsRussian Academy of SciencesYekaterinburg GSP-170Russia
  2. 2.Theoretical Physics and Applied Mathematics DepartmentUrals State Technical UniversityYekaterinburgRussia

Personalised recommendations