Magnetotransport characteristics of strained La0.7Sr0.3MnO3 epitaxial manganite films

  • G. A. OvsyannikovEmail author
  • A. M. Petrzhik
  • I. V. Borisenko
  • A. A. Klimov
  • Yu. A. Ignatov
  • V. V. Demidov
  • S. A. Nikitov
Order, Disorder, and Phase Transition in Condensed Systems


The electrical and magnetic characteristics of La0.7Sr0.3MnO3 (LSMO) epitaxial manganite films are investigated by different methods under conditions when the crystal structure is strongly strained as a result of mismatch between the lattice parameters of the LSMO crystal and the substrate. Substrates with lattice parameters larger and smaller than the nominal lattice parameter of the LSMO crystal are used in experiments. It is shown that the behavior of the temperature dependence of the electrical resistance for the films in the low-temperature range does not depend on the strain of the film and agrees well with the results obtained from the calculations with allowance made for the interaction of electrons with magnetic excitations in the framework of the double-exchange model for systems with strongly correlated electronic states. Investigations of the magneto- optical Kerr effect have revealed that an insignificant (0.3%) orthorhombic distortion of the cubic lattice in the plane of the NdGaO3(110) substrate leads to uniaxial anisotropy of the magnetization of the film, with the easy-magnetization axis lying in the substrate plane. However, LSMO films on substrates (((LaAlO3)0.3+(Sr2AlTaO6)0.7)(001)) ensuring minimum strain of the films exhibit a biaxial anisotropy typical of cubic crystals. The study of the ferromagnetic resonance lines at a frequency of 9.76 GHz confirms the results of magnetooptical investigations and indicates that the ferromagnetic phase in the LSMO films is weakly inhomogeneous.

PACS numbers

74.45.+c 74.50.+r 75.70.Cn 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. A. Izyumov and Yu. N. Skryabin, Usp. Fiz. Nauk 171(2), 121 (2001) [Phys.-Usp. 44 (2), 109 (2001)].CrossRefGoogle Scholar
  2. 2.
    W. Prellier, Ph. Lecoeur, and B. Mercey, J. Phys.: Condens. Matter 13, R915 (2001).CrossRefADSGoogle Scholar
  3. 3.
    A.-M. Haghiri-Cosnet and J. P. Renard, J. Phys. D: Appl. Phys. 36, R127 (2003).CrossRefADSGoogle Scholar
  4. 4.
    M. Ziese, Rep. Prog. Phys. 65, 143 (2002).CrossRefADSGoogle Scholar
  5. 5.
    P. Dey, T. K. Nath, and A. Tarapher, Appl. Phys. Lett. 91, 012511 (2007).Google Scholar
  6. 6.
    F. Tsui, M. C. Smoak, T. K. Nath, and C. B. Eom, Appl. Phys. Lett. 76, 2421 (2000).CrossRefADSGoogle Scholar
  7. 7.
    Y. P. Lee, S. Y. Park, Y. H. Hyun, and J. B. Kim, Phys. Rev. B: Condens. Matter 73, 224413 (2006).Google Scholar
  8. 8.
    Yan Wu, Y. Suzuki, U. Rüdiger, J. Yu, A. D. Kent, T. K. Nath, and C. B. Eom, Appl. Phys. Lett. 75, 2295 (1999).CrossRefGoogle Scholar
  9. 9.
    M. Bibes, S. Valencia, L. Balcells, B. Martĭnez, J. Fontcuberta, M. Wojcik, S. Nadolski, and E. Jedryka, Phys. Rev. B: Condens. Matter 66, 134416 (2002).Google Scholar
  10. 10.
    H. Y. Hwang, T. T. M. Palstra, S.-W. Cheong, and B. Batlogg, Phys. Rev. B: Condens. Matter 52, 15046 (1995).Google Scholar
  11. 11.
    A. J. Millis, T. Darling, and A. Migliori, J. Appl. Phys. 83, 1588 (1998).CrossRefADSGoogle Scholar
  12. 12.
    M. C. Martin, G. Shirane, Y. Endoh, K. Hirota, Y. Moritomo, and Y. Tokura, Phys. Rev. B: Condens. Matter 53, 14285 (1996).ADSGoogle Scholar
  13. 13.
    Yu. A. Boĭkov, T. Claeson, and V. A. Danilov, Fiz. Tverd. Tela (St. Petersburg) 47(12), 2189 (2005) [Phys. Solid State 47 (12), 2281 (2005)].Google Scholar
  14. 14.
    G. J. Snyder, R. Hiskes, S. DiCarolis, M. R. Beasley, and T. H. Geballe, Phys. Rev. B: Condens. Matter 53, 14434 (1996).ADSGoogle Scholar
  15. 15.
    P. Schiffer, A. P. Ramirez, W. Bao, and S.-W. Cheong Phys. Rev. Lett. 75, 3336 (1995).CrossRefADSGoogle Scholar
  16. 16.
    Yu. A. Boĭkov and V. A. Danilov, Fiz. Tverd. Tela (St. Petersburg) 50(1), 92 (2008) [Phys. Solid State 50 (1), 95 (2008)].Google Scholar
  17. 17.
    I. K. Bdikin, P. B. Mozhaev, G. A. Ovsyannikov, F. V. Komissinskiĭ, I. M. Kotelyanskiĭ, and E. I. Raksha, Fiz. Tverd. Tela (St. Petersburg) 43(9), 1548 (2001) [Phys. Solid State 43 (9), 1611 (2001)].Google Scholar
  18. 18.
    M. J. Calderon and L. Brey, Phys. Rev. B: Condens. Matter 64, 140403 (2001).Google Scholar
  19. 19.
    N. G. Bebenin, R. I. Zainullina, V. V. Mashkautsan, V. V. Ustinov, and Ya. M. Mukovskii, Phys. Rev. B: Condens. Matter 69, 104434 (2004).Google Scholar
  20. 20.
    B. C. Chakoumakos, D. G. Schlom, M. Urbanik, and J. Luine, J. Appl. Phys. 83, 1979 (1998).CrossRefADSGoogle Scholar
  21. 21.
    Y. Suzuki, H. Y. Hwang, S.-W. Cheong, T. Siegrist, R. B. van Dover, A. Asamitsu, and Y. Tokura, J. Appl. Phys. 83, 7064 (1998).CrossRefADSGoogle Scholar
  22. 22.
    K. Steenbeck and R. Hiergeist, Appl. Phys. Lett. 75, 17778 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • G. A. Ovsyannikov
    • 1
    • 2
    Email author
  • A. M. Petrzhik
    • 1
  • I. V. Borisenko
    • 1
  • A. A. Klimov
    • 1
  • Yu. A. Ignatov
    • 1
  • V. V. Demidov
    • 1
  • S. A. Nikitov
    • 1
  1. 1.Institute of Radio-Engineering and ElectronicsRussian Academy of SciencesMoscowRussia
  2. 2.Chalmers University of TechnologyGöteborgSweden

Personalised recommendations