Journal of Experimental and Theoretical Physics

, Volume 107, Issue 6, pp 1009–1021 | Cite as

Processes involved in the formation of silver clusters on silicon surface

  • S. R. Bhattacharyya
  • T. K. Chini
  • D. Datta
  • R. Hippler
  • I. Shyjumon
  • B. M. Smirnov
Electronic Properties of Solids

Abstract

We analyze scanning electron microscopy measurements for structures formed in the deposition of solid silver clusters onto a silicon(100) substrate and consider theoretical models of cluster evolution onto a surface as a result of diffusion and formation of aggregates of merged clusters. Scanning electron microscopy (SEM) data are presented in addition to energy dispersive X-ray spectrometry (EDX) measurements of the these films. Solid silver clusters are produced by a DC magnetron sputtering source with a quadrupole filter for selection of cluster sizes (4.1 and 5.6 nm or 1900 and 5000 atoms per cluster in this experiment); the energy of cluster deposition is 0.7 eV/atom. Rapid thermal annealing of the grown films allows analysis of their behavior at high temperatures. The results exhibit formation of cluster aggregates via the diffusion of deposited solid clusters along the surface; an aggregate consists of up to hundreds of individual clusters. This process is essentially described by the diffusion-limited aggregation (DLA) model, and thus a grown porous film consists of cluster aggregates joined by bridges. Subsequent annealing of this film leads to its melting at temperatures lower than to the melting point of bulk silver. Analysis of evaporation of this film at higher temperatures gives a binding energy in bulk silver of ɛ0= (2.74 ± 0.03) eV/atom.

PACS numbers

36.40.-c 36.40.Sx 61.43.Hv 68.37.Hk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Kukushkin and V. V. Slezov, Disperse Systems on Solid Surfaces (Nauka, St. Petersburg, 1996).Google Scholar
  2. 2.
    S. A. Kukushkin and A. V. Osipov, Usp. Phys. Nauk 168(10), 1083 (1998) [Phys.—Usp. 41 (10), 983 (1998)].CrossRefGoogle Scholar
  3. 3.
    P. Jensen, A. L. Barabási, H. Larralde, et al., Phys. Rev. B: Condens. Matter 50, 15 316 (1994).Google Scholar
  4. 4.
    A. Perez, P. Melinon, V. Dupuis, et al., J. Phys. D: Appl. Phys. 30, 709 (1997).CrossRefADSGoogle Scholar
  5. 5.
    T. A. Witten and I. M. Sander, Phys. Rev. Lett. 47, 1400 (1981).CrossRefADSGoogle Scholar
  6. 6.
    P. Meakin, Phys. Rev. A: At., Mol., Opt. Phys. 27, 604, 1495 (1983).ADSMathSciNetGoogle Scholar
  7. 7.
    M. Sahimi, M. McKarnin, T. Nordahl, and M. Tirrell, Phys. Rev. A: At., Mol., Opt. Phys. 32, 590 (1985).ADSGoogle Scholar
  8. 8.
    B. M. Smirnov, Phys. Rep. 188, 1 (1990).CrossRefADSGoogle Scholar
  9. 9.
    H. Gleiter, Nanostruct. Mater. 1, 1 (1992).CrossRefGoogle Scholar
  10. 10.
    H. Gleiter, Nanostruct. Mater. 6, 3 (1995)CrossRefGoogle Scholar
  11. 11.
    S. Y. Liau, D. C. Read, W. J. Pugh, et al., Lett. Appl. Microbiol. 25, 279 (1997).CrossRefGoogle Scholar
  12. 12.
    A. Gupta and S. Silver, Nat. Biotechnol. 16, 888 (1998).CrossRefGoogle Scholar
  13. 13.
    K. Nomiya, A. Yoshizawa, K. Tsukagoshi, et al., J. Inorg. Biochem. 98, 46 (2004).CrossRefGoogle Scholar
  14. 14.
    J. R. Morones, J. L. Elechiguerra, A. Camacho, et al., Nanotechnology 16, 2346 (2005).CrossRefADSGoogle Scholar
  15. 15.
    C. Binns, Surf. Sci. Rep. 44, 1 (2001).CrossRefADSGoogle Scholar
  16. 16.
    K. Shintani, Y. Taniguchi, and S. Kameoka, J. Appl. Phys. 95, 8207 (2004).CrossRefADSGoogle Scholar
  17. 17.
    T. H. Lee, C. R. Hladik, and R. M. Dickson, Appl. Phys. Lett. 84, 118 (2004).CrossRefADSGoogle Scholar
  18. 18.
    I. Shyjumon, M. Gopinadhan, O. Ivanova, et al., Eur. Phys. J. D 37, 409 (2006).CrossRefADSGoogle Scholar
  19. 19.
    B. M. Smirnov, I. Shyjumon, and R. Hippler, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 77, 066 402 (2007).Google Scholar
  20. 20.
    I. Shyjumon, M. Gopinadhan, C. A. Helm, et al., Thin Solid Films 500, 41 (2006).CrossRefADSGoogle Scholar
  21. 21.
    B. M. Smirnov, I. Shyjumon, and R. Hippler, Phys. Scr. 73, 288 (2006).CrossRefADSGoogle Scholar
  22. 22.
    www.oaresearch.co.uk/cluster.htmGoogle Scholar
  23. 23.
    B. M. Smirnov, Clusters and Small Particles in Gases and Plasmas (Springer, New York, 1999).Google Scholar
  24. 24.
    K. Siegbahn, Alpha-, Beta-, and Gamma-Ray Spectroscopy (North Holland, Amsterdam, 1965).MATHGoogle Scholar
  25. 25.
    J. I. Goldstein, D. E. Newbury, P. Echlin, et al., in Scanning Electron Microscopy and X-ray Microanalysis (Kluwer, New York, 2003).Google Scholar
  26. 26.
    S. J. Carroll, S. Pratontep, M. Streun, et al., J. Chem. Phys. 113, 7723 (2000).CrossRefADSGoogle Scholar
  27. 27.
    M. Couillard, S. Pratontep, and R. E. Palmer, Appl. Phys. Lett. 82, 2595 (2003).CrossRefADSGoogle Scholar
  28. 28.
    R. E. Palmer, S. Pratontep, and H. G. Boyen, Nat. Mater. 2, 443 (2004).CrossRefADSGoogle Scholar
  29. 29.
    P. Meakin, J. Colloid Interface Sci. 102, 491 (1985).CrossRefGoogle Scholar
  30. 30.
    Z. Racz and M. Pischke, Phys. Rev. A: At., Mol., Opt. Phys. 31, 985 (1985).ADSGoogle Scholar
  31. 31.
    R. Jullien and R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).MATHGoogle Scholar
  32. 32.
    T. Viszek, Fractal Growth Phenomena (World Sci., Singapore, 1989).Google Scholar
  33. 33.
    W. T. Elam, S. A. Wolf, J. Sprague, et al., Phys. Rev. Lett. 54, 701 (1985).CrossRefADSGoogle Scholar
  34. 34.
    Y. Sawada, A. Dougherty, and J. P. Golub, Phys. Rev. Lett. 56, 1260 (1986).CrossRefADSGoogle Scholar
  35. 35.
    D. Grier, E. Ben-Jacob, R. Clarke, and L. M. Sander, Phys. Rev. Lett. 56, 1264 (1986).CrossRefADSGoogle Scholar
  36. 36.
    B. M. Smirnov and R. S. Berry, Phase Transitions of Simple Systems (Springer, Berlin, 2007).Google Scholar
  37. 37.
    T. Castro, R. Reifenberger, E. E. Choi, and R. P. Andres, Phys. Rev. B: Condens. Matter 42, 8548 (1990).ADSGoogle Scholar
  38. 38.
    S. Zhao, S. Wang, and H. Ye, J. Phys. Soc. Jpn. 70, 2953 (2001).CrossRefADSGoogle Scholar
  39. 39.
    H. Arslan and M. H. Güven, New J. Phys. 7, 60 (2005).CrossRefADSGoogle Scholar
  40. 40.
    C. L. Cleveland, W. D. Luedtke, and U. Landman, Phys. Rev. Lett. 81, 2036 (1998).CrossRefGoogle Scholar
  41. 41.
    S. Pratontep, S. J. Carroll, C. Xirouchaki, et al., Rev. Sci. Instrum. 76, 045103 (2005).Google Scholar
  42. 42.
    A. T. Bell, Science (Washington) 299, 1688 (2003).CrossRefADSGoogle Scholar
  43. 43.
    A. P. Alivisatos, Science (Washington) 271, 933 (1996).CrossRefADSGoogle Scholar
  44. 44.
    C. S. Lent and P. D. Tougaw, Proc. IEEE 85, 541 (1997).CrossRefGoogle Scholar
  45. 45.
    S. O. Obare, R. E. Hollowell, and C. J. Murphy, Langmuir 18, 10 407 (2002).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • S. R. Bhattacharyya
    • 1
  • T. K. Chini
    • 1
  • D. Datta
    • 1
  • R. Hippler
    • 2
  • I. Shyjumon
    • 2
  • B. M. Smirnov
    • 3
  1. 1.Surface Physics DivisionSaha Institute of Nuclear PhysicsKolkataIndia
  2. 2.Institut für PhysikErnst-Moritz-Arndt Universität GreifswaldGreifswaldGermany
  3. 3.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations