Journal of Experimental and Theoretical Physics

, Volume 107, Issue 4, pp 649–652 | Cite as

Pseudogap value in the energy spectrum of LaOFeAs: a fixed spin moment treatment

  • M. A. KorotinEmail author
  • S. V. Streltsov
  • A. O. Shorikov
  • V. I. Anisimov
Order, Disorder, and Phase Transition in Condensed Systems


The experimental data available to date in the literature corresponding to the paramagnetic-spin density wave transition in nonsuperconducting LaOFeAs are discussed. In particular, we note that a relative decrease in the density of states on the Fermi level and formation of a pseudogap occur upon a spin density wave transition. The values of these quantities are not properly described in density functional theory. The agreement with experimental estimations becomes more accurate with the use of a fixed spin moment procedure when the iron spin moment is set to m experimental value. Strong electron correlations that are not included m the present calculation scheme may lead both to a decrease in the spin moment and to a renormalization of the energy spectrum in the vicinity of the Fermi level for correct description of the discussed characteristics.

PACS numbers

71.15.Mb 74.25.Jb 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Kamihara, T. Watanabe, M. Hirano, et al., J. Am. Chem. Soc. 130, 3296 (2008).CrossRefGoogle Scholar
  2. 2.
    D. J. Singh and M. H. Du, Phys. Rev. Lett. 100, 237003 (2008).Google Scholar
  3. 3.
    C. Cao, P. J. Hirschfeld, and H.-P. Cheng, Phys. Rev. B 77, 220506 (2008).Google Scholar
  4. 4.
    I. I. Mazin, D. J. Singh, M. D. Johannes, et al., arXiv:0803.2740.Google Scholar
  5. 5.
    G. Xu, W. Ming, Y. Yao, et al., Europhys. Lett. 82, 67002 (2008).Google Scholar
  6. 6.
    F. Ma and Z.-Y. Lu, Phys. Rev. B 78, 033111 (2008).Google Scholar
  7. 7.
    J. Dong, H. J. Zhang, G. Xu, et al., arXiv:0803.3426.Google Scholar
  8. 8.
    Z. P. Yin, S. Lebegue, M. J. Han, et al., Europhys. Lett. 83, 27006 (2008).Google Scholar
  9. 9.
    C. de la Cruz, Q. Huang, J. W. Lynn, et al., Nature 453, 899 (2008).CrossRefADSGoogle Scholar
  10. 10.
    S. Kitao, Y. Kobayashi, S. Higashitaniguchi, et al., arXiv:0805.0041.Google Scholar
  11. 11.
    H.-H. Klauss, H. Luetkens, R. Klingeler, et al., arXiv:0805.0264.Google Scholar
  12. 12.
    I. I. Mazin, D. J. Singh, and A. Aguayo, in Proceedings of the NATO Advanced Research Workshop on Physics of Spin in Solids: Materials, Methods, and Applications, Ed. by S. Halilov, (Kluwer, Dordrecht, 2003).Google Scholar
  13. 13.
    M. A. McGuire, A. D. Christianson, A. S. Sefat, et al., arXiv:0804.0796.Google Scholar
  14. 14.
    G. Mu, X. Zhu, L. Fang, et al., Chinese Phys. Lett. 25, 2221 (2008).CrossRefADSGoogle Scholar
  15. 15.
    T. Nomura, S. W. Kim, Y. Kamihara, et al., arXiv:0804.3569.Google Scholar
  16. 16.
    Y. Ishida, T. Shimojima, K. Ishizaka, et al., arXiv:0805.2647.Google Scholar
  17. 17.
    T. Sato, S. Souma, K. Nakayama, et al., J. Phys. Soc. Jpn. 77, 063708 (2008).Google Scholar
  18. 18.
    O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571(1984).CrossRefADSGoogle Scholar
  19. 19.
    J. P. Perdew and Y. Wang, Phys. Rev. B: Condens. Matter 45, 13244 (1992).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • M. A. Korotin
    • 1
    Email author
  • S. V. Streltsov
    • 1
  • A. O. Shorikov
    • 1
  • V. I. Anisimov
    • 1
  1. 1.Institute of Metal PhysicsRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations