Advertisement

Journal of Experimental and Theoretical Physics

, Volume 107, Issue 3, pp 413–429 | Cite as

Renormalization group functions of the φ4 theory in the strong coupling limit: Analytical results

  • I. M. Suslov
Nuclei, Particles, Fields, Gravitation, and Astrophysics

Abstract

The previous attempts of reconstructing the Gell-Mann-Low function β(g) of the φ4 theory by summing perturbation series give the asymptotic behavior β(g) = β g in the limit g→∞, where α = 1 for the space dimensions d = 2, 3, 4. It can be hypothesized that the asymptotic behavior is β(g) ∼ g for all d values. The consideration of the zero-dimensional case supports this hypothesis and reveals the mechanism of its appearance: it is associated with vanishing of one of the functional integrals. The generalization of the analysis confirms the asymptotic behavior β(g) ∼ g in the general d-dimensional case. The asymptotic behaviors of other renormalization group functions are constant. The connection with the zero-charge problem and triviality of the φ4 theory is discussed.

PACS numbers

11.10.Gh 11.10.Hi 11.10.Jj 11.10.Kk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau, A. A. Abrikosov, and I. M. Khalatnikov, Dokl. Akad. Nauk SSSR 95, 497, 773, 1177 (1954).zbMATHGoogle Scholar
  2. 2.
    N. N. Bogolyubov and D. V. Shirkov, Introduction to the Quantum Field Theory (Nauka, Moscow, 1976) [in Russian].Google Scholar
  3. 3.
    L. D. Landau and I. Ya. Pomeranchuk, Dokl. Akad. Nauk SSSR 102, 489 (1955); I. Ya. Pomeranchuk, Dokl. Akad. Nauk SSSR 103, 1005 (1955).zbMATHMathSciNetGoogle Scholar
  4. 4.
    I. M. Suslov, Zh. Éksp. Teor. Fiz. 120(1), 5 (2001) [JETP 93 (1), 1 (2001)].Google Scholar
  5. 5.
    I. M. Suslov, Pis’ma Zh. Éksp. Teor. Fiz. 74(4), 211 (2001) [JETP Lett. 74 (4), 191 (2001)].Google Scholar
  6. 6.
    I. M. Suslov, Pis’ma Zh. Éksp. Teor. Fiz. 76(6), 387 (2002) [JETP Lett. 76 (6), 327 (2002)].Google Scholar
  7. 7.
    I. M. Suslov, Zh. Éksp. Teor. Fiz. 127(6), 1350 (2005) [JETP 100 (6), 1188 (2005)].Google Scholar
  8. 8.
    A. A. Vladimirov, D. I. Kazakov, and O. V. Tarasov, Zh. Éksp. Teor. Fiz. 77(3), 1035 (1979) [Sov. Phys. JETP 50 (3), 521 (1979)].MathSciNetGoogle Scholar
  9. 9.
    F. M. Dittes, Yu. A. Kubyshin, and O. V. Tarasov, Teor. Mat. Fiz. 37, 66 (1978).MathSciNetGoogle Scholar
  10. 10.
    S. G. Gorishny, A. L. Kataev, S. A. Larin, and L. R. Surguladze, Phys. Lett. B 256, 81 (1991).CrossRefADSGoogle Scholar
  11. 11.
    T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin, Phys. Lett. B 400, 379 (1997).CrossRefADSGoogle Scholar
  12. 12.
    L. N. Lipatov, Zh. Éksp. Teor. Fiz. 72(2), 411 (1977) [Sov. Phys. JETP 45 (2), 216 (1977)].MathSciNetGoogle Scholar
  13. 13.
    E. B. Bogomolny and V. A. Fateyev, Phys. Lett. B 71, 93 (1977).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    E. B. Bogomolny and V. A. Fateyev, Phys. Lett. B 76, 210 (1978).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    E. B. Bogomolny, V. A. Fateyev, and L. N. Lipatov, Sov. Sci. Rev., Sect. A 2, 247 (1980).Google Scholar
  16. 16.
    D. I. Kazakov, O. V. Tarasov, and D. V. Shirkov, Teor. Mat. Fiz. 38, 15 (1979).MathSciNetGoogle Scholar
  17. 17.
    Yu. A. Kubyshin, Teor. Mat. Fiz. 58, 137 (1984).MathSciNetGoogle Scholar
  18. 18.
    A. N. Sissakian, I. L. Solovtsov, and O. P. Solovtsova, Phys. Lett. B 321, 381 (1994).CrossRefADSGoogle Scholar
  19. 19.
    A. A. Pogorelov and I. M. Suslov, Zh. Éksp. Teor. Fiz. 132(2), 406 (2007) [JETP 105 (2), 360 (2007)].Google Scholar
  20. 20.
    A. A. Pogorelov and I. M. Suslov, Pis’ma Zh. Éksp. Teor. Fiz. 86(1), 41 (2007) [JETP Lett. 86 (1), 39 (2007)].Google Scholar
  21. 21.
    K. Wilson and J. Kogut, The Renormalization Group and the ε-Expansion (Wiley, New York, 1974; Mir, Moscow, 1975).Google Scholar
  22. 22.
    J. P. Eckmann and R. Epstein, Commun. Math. Phys. 64, 95 (1979).CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    J. Frölich, Nucl. Phys. B 200, 281 (1982).CrossRefADSGoogle Scholar
  24. 24.
    M. Aizenman, Commun. Math. Phys. 86, 1 (1982).zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    S. Ma, Modern Theory of Critical Phenomena (Benjamin, Reading, MA, United States, 1976; Mir, Moscow, 1980).CrossRefGoogle Scholar
  26. 26.
    E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, in Phase Transitions and Critical Phenomena, Ed. by C. Domb and M. S. Green (Academic, New York, 1976), Vol. VI.Google Scholar
  27. 27.
    G. A. Baker, Jr., B. G. Nickel, and D. I. Meiron, Phys. Rev. Lett. 36, 1351 (1976); Phys. Rev. B: Solid State 17, 1365 (1978); J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett. 39, 95 (1977); Phys. Rev. B: Condens. Matter 21, 3976 (1980).CrossRefADSGoogle Scholar
  28. 28.
    E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, Phys. Rev. D: Part. Fields 15, 1544 (1977).ADSGoogle Scholar
  29. 29.
    A. G. Basuev and A. N. Vasil’ev, Teor. Mat. Fiz 18, 129 (1974); P. Cvitanovic, B. Lautrup, and R. B. Pearson, Phys. Rev. D: Part. Fields 18, 1939 (1978); É. Z. Kuchinskioe and M. V. Sadovskiĭ, Zh. Éksp. Teor. Fiz. 113 (2), 664 (1998) [JETP 86 (2), 367 (1998)]; L. G. Molinary and N. Manini, Eur. Phys. J. B 51, 331 (2006).MathSciNetGoogle Scholar
  30. 30.
    A. I. Larkin and D. E. Khmel’nitskioe, Zh. Éksp. Teor. Fiz. 56(6), 2087 (1969) [Sov. Phys. JETP 29 (6), 1123 (1969)].Google Scholar
  31. 31.
    A. Pelissetto and E. Vicari, Nucl. Phys. B 519, 626 (1998).zbMATHCrossRefADSGoogle Scholar
  32. 32.
    A. I. Nikishov and V. I. Ritus, Teor. Mat. Fiz 92, 24 (1992); Zh. Éksp. Teor. Fiz. 105 (4), 769 (1994) [JETP 78 (4), 411 (1994)].MathSciNetGoogle Scholar
  33. 33.
    D. I. Kazakov, Teor. Mat. Fiz 46, 426 (1981).MathSciNetGoogle Scholar
  34. 34.
    A. A. Vladimirov and D. V. Shirkov, Usp. Fiz. Nauk 129(3), 407 (1979) [Sov. Phys.-Usp. 22 (11), 860 (1979)].MathSciNetGoogle Scholar
  35. 35.
    G. Jug and B. N. Shalaev, J. Phys. A: Math. Gen. 32, 7249 (1999).zbMATHCrossRefADSMathSciNetGoogle Scholar
  36. 36.
    D. A. Lobaskin and I. M. Suslov, Zh. Éksp. Teor. Fiz. 126(2), 268 (2004) [JETP 99 (2), 234 (2004)].Google Scholar
  37. 37.
    A. A. Pogorelov and I. M. Suslov, Zh. Éksp. Teor. Fiz. 133(6), 1277 (2008) [JETP 106 (6), 1118 (2008)].Google Scholar
  38. 38.
    M. G. do Amaral and R. C. Shellard, Phys. Lett. B 171, 285 (1986).CrossRefADSGoogle Scholar
  39. 39.
    I. A. Fox and I. G. Halliday, Phys. Lett. B 159, 149 (1985).ADSMathSciNetGoogle Scholar
  40. 40.
    J. K. Kim and A. Patrascioiu, Phys. Rev. D: Part. Fields 47, 2558 (1993).ADSGoogle Scholar
  41. 41.
    D. J. E. Callaway and R. Petronzio, Nucl. Phys. B 240, 577 (1984).CrossRefADSGoogle Scholar
  42. 42.
    C. B. Lang, Nucl. Phys. B s265, 630 (1986).CrossRefADSGoogle Scholar
  43. 43.
    P. Butera and M. Comi, hep-th/0112225.Google Scholar
  44. 44.
    A. Vladikas and C. C. Wong, Phys. Lett. B 189, 154 (1987).CrossRefADSGoogle Scholar
  45. 45.
    R. Kenna and C. B. Lang, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 49, 5012 (1994).Google Scholar
  46. 46.
    A. J. Guttmann, J. Phys. A: Math. Gen. 11, L103 (1978).CrossRefADSMathSciNetGoogle Scholar
  47. 47.
    C. A. de Carvalho, S. Caracciolo, and J. Frolich, Nucl. Phys. B 215, 209 (1983).CrossRefADSGoogle Scholar
  48. 48.
    P. Grassberger, R. Hegger, and L. Schafer, J. Phys. A: Math. Gen. 27, 7265 (1994).zbMATHCrossRefADSMathSciNetGoogle Scholar
  49. 49.
    S. McKenzie, M. F. Sykes, and D. S. Gaunt, J. Phys. A: Math. Gen. 12, 743 (1978); 12, 871 (1979); 13, 1015 (1980).CrossRefADSGoogle Scholar
  50. 50.
    W. Bernreuther, M. Cockeler, and M. Kremer, Nucl. Phys. B 295, 211 (1988).CrossRefADSGoogle Scholar
  51. 51.
    B. Freedman, P. Smolensky, and D. Weingarten, Phys. Lett. B 113, 481 (1982).CrossRefADSMathSciNetGoogle Scholar
  52. 52.
    I. T. Drummond, S. Duane, and R. R. Horgan, Nucl. Phys. B 280, 25 (1987).CrossRefADSGoogle Scholar
  53. 53.
    G. A. Baker, L. P. Benofy, F. Cooper, and D. Preston, Nucl. Phys. B 210, 273 (1982).CrossRefADSMathSciNetGoogle Scholar
  54. 54.
    G. A. Baker and J. M. Kincaid, Phys. Rev. Lett. 22, 1431 (1979).CrossRefADSGoogle Scholar
  55. 55.
    M. Consoli and P. M. Stevenson, Z. Phys. C: Part. Fields 63, 427 (1994).CrossRefGoogle Scholar
  56. 56.
    A. Agodi, G. Andronico, P. Cea, et al., Mod. Phys. Lett. A 12, 1011 (1997); Nucl. Phys. B, Proc. Suppl. 63, 637 (1998).CrossRefADSGoogle Scholar
  57. 57.
    P. Cea, M. Consoli, and L. Cosmai, Mod. Phys. Lett. A 13, 2361 (1998); Nucl. Phys. B, Proc. Suppl. 73, 727 (1999).CrossRefADSGoogle Scholar
  58. 58.
    M. Luscher and P. Weisz, Nucl. Phys. B 290, 25 (1987); 295, 65 (1988); 318, 705 (1989).CrossRefADSMathSciNetGoogle Scholar
  59. 59.
    C. M. Bender and H. F. Jones, Phys. Rev. D: Part. Fields 38, 2526 (1988).ADSGoogle Scholar
  60. 60.
    M. Moshe and J. Zinn-Justin, Phys. Rep. 385, 69 (2003).zbMATHCrossRefADSMathSciNetGoogle Scholar
  61. 61.
    A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions (Nauka, Moscow, 1982; Pergamon, Oxford, 1984).Google Scholar
  62. 62.
    L. N. Lipatov, Zh. Éksp. Teor. Fiz. 71(6), 2010 (1976) [Sov. Phys. JETP 44 (6), 1055 (1976)].Google Scholar
  63. 63.
    A. A. Slavnov and L. D. Faddeev, Gauge Fields: Introduction to Quantum Theory (Benjamin, Reading, MA, United States, 1980; Nauka, Moscow, 1988).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Kapitza Institute for Physical ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations