Nanospallation induced by an ultrashort laser pulse

  • N. A. Inogamov
  • V. V. Zhakhovskii
  • S. I. Ashitkov
  • Yu. V. Petrov
  • M. B. Agranat
  • S. I. Anisimov
  • K. Nishihara
  • V. E. Fortov
Atoms, Molecules, Optics


A femtosecond laser pulse with power density of 1013 to 1014 W/cm2 incident on a metal target causes ablation and ejection of the surface layer. The ejected laser plume has a complicated structure. At the leading front of the plume, there is a spall layer where the material is in a molten state. The spall layer is a remarkable part of the plume in that the liquid-phase density does not decrease with time elapsed. This paper reports theoretical and experimental studies of the formation, structure, and ejection of the laser plume. The results of molecular dynamics simulations and a theoretical survey of plume structure based on these results are presented. It is shown that the plume has no spall layer when the pulse fluence exceeds an evaporation threshold F ev. As the fluence increases from the ablation threshold F a to F ev, the spall-layer thickness for gold decreases from 100 nm to a few lattice constants. Experimental results support theoretical calculations. Microinterferometry combined with a pump-probe technique is used to obtain new quantitative data on spallation dynamics for gold. The ablation threshold is evaluated, the characteristic crater shape and depth are determined, and the evaporation threshold is estimated.

PACS numbers

79.20.Ds 71.15.Pd 


  1. 1.
    D. von der Linde and K. Sokolowski-Tinten, Appl. Surf. Sci. 154–155, 1 (2000).CrossRefGoogle Scholar
  2. 2.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, and D. von der Linde, Appl. Surf. Sci. 127–129, 755 (1998).CrossRefGoogle Scholar
  3. 3.
    J. Koch, F. Korte, T. Bauer, et al., Appl. Phys. A: Mater. Sci. Process. 81, 325 (2005).CrossRefADSGoogle Scholar
  4. 4.
    S. K. Friedlander and D. Y. H. Pui, J. Nanopart. Res. 6, 313 (2004).CrossRefGoogle Scholar
  5. 5.
    T. E. Itina, J. Hermann, Ph. Delaporte, and M. Sentis, Appl. Surf. Sci. 208–209, 27 (2003).CrossRefGoogle Scholar
  6. 6.
    R. Hergenroeder, M. Miclea, and V. Hommes, Nanotechnology 17, 4065 (2006).CrossRefADSGoogle Scholar
  7. 7.
    B. S. Luk’yanchuk, W. Marine, and S. I. Anisimov, Laser Phys. 8, 291 (1998).Google Scholar
  8. 8.
    S. Amoruso, G. Ausanio, A. C. Barone, et al., J. Phys. B: At., Mol. Opt. Phys. 38, L329 (2005).CrossRefADSGoogle Scholar
  9. 9.
    X. Gu and H. M. Urbassek, Appl. Phys. B: At., Mol. Opt. Phys. 81, 675 (2005).ADSGoogle Scholar
  10. 10.
    S. I. Kudryashov and S. D. Allen, J. Appl. Phys. 93, 4306 (2003).CrossRefADSGoogle Scholar
  11. 11.
    L. V. Zhigilei, E. Leveugle, B. J. Garrison, et al., Chem. Rev. 103, 321 (2003).CrossRefGoogle Scholar
  12. 12.
    D. B. Chrisey, A. Pique, R. A. McGill, et al., Chem. Rev. 103, 553 (2003).CrossRefGoogle Scholar
  13. 13.
    C. M. Pitsillides, E. K. Joe, X. Wei, et al., Biophys. J. 84, 4023 (2003).CrossRefGoogle Scholar
  14. 14.
    A. Vogel, J. Noack, G. Huettmann, and G. Paltauf, Appl. Phys. B: At., Mol. Opt. Phys. 81, 1015 (2005).ADSGoogle Scholar
  15. 15.
    D. S. Ivanov and L. V. Zhigilei, Phys. Rev. Lett. 91, 105701 (2003).Google Scholar
  16. 16.
    G. É. Norman and V. V. Stegailov, Dokl. Akad. Nauk 386, 328 (2002) [Dokl. Phys. 47 (9), 667 (2002)].Google Scholar
  17. 17.
    E. Leveugle, D. S. Ivanov, and L. V. Zhigilei, Appl. Phys. A: Mater. Sci. Process. 79, 1643 (2004).ADSGoogle Scholar
  18. 18.
    S. I. Anisimov, V. V. Zhakhovskiĭ, N. A. Inogamov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 77(11), 731 (2003) [JETP Lett. 77 (11), 606 (2003)].Google Scholar
  19. 19.
    S. I. Anisimov, V. V. Zhakhovskiĭ, N. A. Inogamov, et al., Zh. Éksp. Teor. Fiz. 130(2), 212 (2006) [JETP 103 (2), 183 (2006)].Google Scholar
  20. 20.
    D. S. Ivanov, A. N. Volkov, G. O’Connor, and L. Z. Zhigilei, in Abstracts of the 5th International Conference on Photo-Excited Processes and Applications (ICPEPA-5), Charlottesville, United States, 2006 (Rep. C-5094, Charlottesville, 2006);
  21. 21.
    M. Sob, L. G. Wang, and V. Vitek, Mater. Sci. Eng., A 234–236, 1075 (1997).Google Scholar
  22. 22.
    V. V. Zhakhovskiĭ, K. Nishihara, S. I. Anisimov, and N. A. Inogamov, Pis’ma Zh. Éksp. Teor. Fiz. 71(4), 241 (2000) [JETP Lett. 71 (4), 167 (2000)].Google Scholar
  23. 23.
    G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].Google Scholar
  24. 24.
    T. Antoun, L. Seaman, D. R. Curran, et al., Spall Fracture (Springer-Verlag, New York, 2003).Google Scholar
  25. 25.
    N. A. Inogamov, S. I. Anisimov, and B. Retfeld, Zh. Éksp. Teor. Fiz. 115(6), 2091 (1999) [JETP 88 (6), 1143 (1999)].Google Scholar
  26. 26.
    V. Zhakhovskii, K. Nishihara, Y. Fukuda, and S. Shimojo, in The IEEE Proceeding of the 5th International Symposium on Cluster Computing and Grid (CCGrid 2005), Cardiff, United Kingdom, 2005, Vol. 2, p. 848; DC/0405086v1.Google Scholar
  27. 27.
    M. B. Agranat, S. I. Ashitkov, A. A. Ivanov, et al., Kvantovaya Élektron. (Moscow) 34, 506 (2004).CrossRefGoogle Scholar
  28. 28.
    J. M. Liu, Opt. Lett. 7, 196 (1982).ADSGoogle Scholar
  29. 29.
    V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, J. Opt. Soc. Am. B 23, 1954 (2006).CrossRefADSGoogle Scholar
  30. 30.
    P. Mannion, J. Magee, and E. Coyne, Proc. SPIE-Int. Soc. Opt. Eng. 4876, 470 (2003).Google Scholar
  31. 31.
    M. B. Agranat, S. I. Anisimov, S. I. Ashitkov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 83(11), 592 (2006) [JETP Lett. 83 (11), 501 (2006)].Google Scholar
  32. 32.
    S. I. Anisimov, N. A. Inogamov, Yu. V. Petrov, et al., in Abstracts of the 9th Annual Conference on Laser Ablation (COLA 2007), Tenerife, Spain, 2007 (Technical Program, Rep. MO-09, Tenerife, 2007), p. 20.Google Scholar
  33. 33.
    S. I. Anisimov, N. A. Inogamov, Yu. V. Petrov, et al., in Abstracts of the 9th Annual Conference on Laser Ablation (COLA 2007), Tenerife, Spain, 2007 (Technical Program, Rep. PMO-36, Tenerife, 2007), p. 62.Google Scholar
  34. 34.
    Handbook of Optical Constants of Solids III, Ed. by E. D. Palik (Academic, New York, 1998), Vol. 1.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • N. A. Inogamov
    • 1
  • V. V. Zhakhovskii
    • 2
    • 3
  • S. I. Ashitkov
    • 2
  • Yu. V. Petrov
    • 1
  • M. B. Agranat
    • 2
  • S. I. Anisimov
    • 1
  • K. Nishihara
    • 3
  • V. E. Fortov
    • 2
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Laser EngineeringOsaka UniversityOsakaJapan

Personalised recommendations