Advertisement

Journal of Experimental and Theoretical Physics

, Volume 106, Issue 6, pp 1118–1129 | Cite as

Estimate of the critical exponents from the field-theoretical renormalization group: mathematical meaning of the “Standard Values”

  • A. A. Pogorelov
  • I. M. SuslovEmail author
Order, Disorder, and Phase Transition in Condensed Systems

Abstract

New estimates of the critical exponents have been obtained from the field-theoretical renormalization group using a new method for summing divergent series. The results almost coincide with the central values obtained by Le Guillou and Zinn-Justin (the so-called standard values), but have lower uncertainty. It has been shown that usual field-theoretical estimates implicitly imply the smoothness of the coefficient functions. The last assumption is open for discussion in view of the existence of the oscillating contribution to the coefficient functions. The appropriate interpretation of the last contribution is necessary both for the estimation of the systematic errors of the standard values and for a further increase in accuracy.

PACS numbers

11.10.Kk 11.15.Pg 11.15.Me 64.60.F- 75.10.Hk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, in Phase Transitions and Critical Phenomena, Ed. by C. Domb and M. S. Green (Academic, New York, 1976) Vol. VI.Google Scholar
  2. 2.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Butterworth-Heinemann, Oxford, 1984).Google Scholar
  3. 3.
    L. N. Lipatov, Zh. Eksp. Teor. Fiz. 72(2), 411 (1977) [Sov. Phys. JETP 45 (2), 216 (1977)].MathSciNetGoogle Scholar
  4. 4.
    E. Brezin and G. Parisi, J. Stat. Phys. 19, 269 (1978).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    G. A. Baker, Jr., B. G. Nickel, and D. I. Meiron, Phys. Rev. Lett. 36, 1351 (1976); Phys. Rev. Be 17, 1365 (1978).CrossRefADSGoogle Scholar
  6. 6.
    J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett. 39, 95 (1977); Phys. Rev. B 21, 3976 (1980).CrossRefADSGoogle Scholar
  7. 7.
    R. Guida and J. Zinn-Justin, J. Phys. A 31, 8103 (1998).zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    I. M. Suslov, Zh. Eksp. Teor. Fiz. 120(1), 5 (2001) [JETP 93 (1), 1 (2001)].Google Scholar
  9. 9.
    I. M. Suslov, Zh. Eksp. Teor. Fiz. 127(6), 1350 (2005) [JETP 100 (6), 1188 (2005)].Google Scholar
  10. 10.
    I. M. Suslov, Zh. Eksp. Teor. Fiz. 116(2), 369 (1999) [JETP 89 (2), 197 (1999)].Google Scholar
  11. 11.
    A. I. Mudrov and K. B. Varnashev, Phys. Rev. E 58, 1 (1998).CrossRefGoogle Scholar
  12. 12.
    H. Kleinert and V. Schulte-Frohlinde, Critical Properties of ϕ4-Theories (World Sci., Singapore, 2001).Google Scholar
  13. 13.
    A. A. Pogorelov and I. M. Suslov, Zh. Eksp. Teor. Fiz. 132(2), 406 (2007) [JETP 105 (2), 360 (2007)].Google Scholar
  14. 14.
    H. Kleinert, Phys. Rev. D 60, 085001 (1999).Google Scholar
  15. 15.
    F. Jasch and H. Kleinert, J. Math. Phys. 42, 52 (2001).zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    A. A. Pogorelov and I. M. Suslov, Pis’ma Zh. Éksp. Teor. Fiz. 86(1), 41 (2007) [JETP Lett. 86 (1), 39 (2007)].Google Scholar
  17. 17.
    A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002).zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    M. Campostrini, M. Hasenbusch, A. Pelissetto, et al., Phys. Rev. B 65, 144520 (2002).Google Scholar
  19. 19.
    M. Campostrini, M. Hasenbusch, A. Pelissetto, and E. Vicari, Phys. Rev. B 74, 144506 (2006).Google Scholar
  20. 20.
    L. S. Goldner, N. Mulders, and G. Ahlers, J. Low Temp. Phys. 93, 131 (1993).CrossRefADSGoogle Scholar
  21. 21.
    J. A. Lipa, D. R. Swanson, J. A. Nissen, et al., Phys. Rev. Lett. 76, 944 (1996).CrossRefADSGoogle Scholar
  22. 22.
    J. A. Lipa, D. R. Swanson, J. A. Nissen, et al., Phys. Rev. Lett. 84, 4894 (2000), see footnote 15.CrossRefADSGoogle Scholar
  23. 23.
    J. A. Lipa, J. A. Nissen, D. A. Stricker et al., Phys. Rev. B 68, 174518 (2003).Google Scholar
  24. 24.
    A. Pelissetto and E. Vicari, E-print archives, cond-mat/0703114.Google Scholar
  25. 25.
    T. Prellberg, J. Phys. A 34, L599 (2001).zbMATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    P. Belohorec and B. G. Nickel, Accurate Universal and Two-Parameter Model Results from a Monte Carlo Renormalization Group Study (Guelph University Report, Guelph, Canada, 1997).Google Scholar
  27. 27.
    J. P. Eckmann, J. Magnen, and R. Seneor, Commun. Math. Phys. 39, 251 (1975); J. S. Feldman and K. Osterwalder, Ann. Phys. (San Diego, CA) 97, 80 (1976); J. Magnen and R. Seneor, Commun. Math. Phys. 56, 237 (1977); J. P. Eckmann and H. Epstein, Commun. Math. Phys. 68, 245 (1979).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Kapitza Institute for Physical ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations