Cosmic microwave background anisotropy induced by a moving straight cosmic string

  • O. S. Sazhina
  • M. V. Sazhin
  • V. N. Sementsov
Nuclei, Particles, Fields, Gravitation, and Astrophysics


A method of searching for cosmic strings based on an analysis of the cosmic microwave background (CMB) anisotropy is presented. A moving straight cosmic string is shown to generate structures of enhanced and reduced brightness with a distinctive shape. The conditions under which a string can be detected by both CMB anisotropy and gravitational lensing in optical surveys are analyzed. For a relativistic string with a deficit angle of ∼1″–2″, the amplitude of the generated anisotropy is shown to be ∼15–30 μK.

PACS numbers

11.25.-w 11.27.+d 95.75.Mn 95.85.Bh 98.80.-k 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. W. B. Kibble, J. Phys. A: Math. Gen. 9, 1387 (1976).CrossRefADSGoogle Scholar
  2. 2.
    Ya. B. Zeldovich, Mon. Not. R. Astron. Soc. 192, 663 (1980).ADSGoogle Scholar
  3. 3.
    A. Vilenkin, Phys. Rev. D: Part. Fields 23, 852 (1981).ADSGoogle Scholar
  4. 4.
    A.-C. Davis and T. W. B. Kibble, Contemp. Phys. 46, 313 (2005).CrossRefADSGoogle Scholar
  5. 5.
    J. Polchinski and J. V. Rocha, Phys. Rev. D Contemp. Phys. 75, 123503 (2007).Google Scholar
  6. 6.
    M. Sazhin, G. Longo, M. Capaccioli, et al., Mon. Not. R. Astron. Soc. 343, 353 (2003).CrossRefADSGoogle Scholar
  7. 7.
    M. Sazhin, O. Khovanskaya, M. Capaccioli, et al., E-print archives, astro-ph/0611744.Google Scholar
  8. 8.
    M. Sazhin, M. Capaccioli, G. Longo, et al., E-print archives, astro-ph/0601494.Google Scholar
  9. 9.
    E. Agol, C. J. Hogan, and R. M. Plotkin, E-print archives, astro-ph/0603838.Google Scholar
  10. 10.
    S. Veeraraghavan and A. Stebbins, Astrophys. J. 395, L55 (1992).CrossRefADSGoogle Scholar
  11. 11.
    L. Perivolaropoulos, Astrophys. J. 451, 429 (1995).CrossRefADSGoogle Scholar
  12. 12.
    A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, Cambridge, 1994).zbMATHGoogle Scholar
  13. 13.
    A. Stebbins, Astrophys. J. 327, 584 (1988).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    A. Hindmarsh, in The Formation and Evolution of Cosmic Strings, Ed. by G. Gibbons, S. W. Hawking, and T. Vachaspathi (Cambridge University Press, Cambridge, 1990).Google Scholar
  15. 15.
    N. Kaiser and A. Stebbins, Nature (London) 310, 391 (1984).CrossRefADSGoogle Scholar
  16. 16.
    D. N. Spergel, R. Bean, O. Dore, et al., Astrophys. J., Suppl. Ser. 170, 377 (2007).CrossRefADSGoogle Scholar
  17. 17.
    S. Perlmutter, G. Aldering, M. Della Valle, et al., Nature (London) 391, 51 (1998).CrossRefADSGoogle Scholar
  18. 18.
    E. W. Kolb and M. C. Turner, The Early Universe (Addison Wesley, Chicago, 1990).zbMATHGoogle Scholar
  19. 19.
    I. Shklovsky, Astrophys. J. 150, L1 (1967).CrossRefADSGoogle Scholar
  20. 20.
    N. Kardashev, Astrophys. J. 150, L135 (1967).CrossRefADSGoogle Scholar
  21. 21.
    K. M. Gorski, E. Hivon, A. J. Banday, et al., Astrophys. J. 622, 759 (2005).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • O. S. Sazhina
    • 1
  • M. V. Sazhin
    • 1
  • V. N. Sementsov
    • 1
  1. 1.Sternberg Astronomical InstituteMoscow State UniversityMoscowRussia

Personalised recommendations