Advertisement

Droplet model of an atomic cluster at a solid surface

  • V. V. Semenikhina
  • A. G. LyalinEmail author
  • A. V. Solov’yov
  • W. Greiner
Atoms, Molecules, Optics

Abstract

A method for calculating the characteristics of the stability, energy, and geometry of an atomic cluster at a solid surface is proposed, which is based on a droplet model that takes into account the cluster-solid interaction. As an example, the interaction of a neutral argon cluster with a (001) surface of graphite is considered. The results of calculations performed within the framework of the droplet model show good agreement with the results of numerical simulation based on a dynamic search for the most stable isomers in the course of cluster growth. It is shown that the droplet model can be used for simple evaluation of the geometry, stability, and energy characteristics of clusters at solid surfaces.

PACS numbers

61.46.-w 36.40.-c 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Structure and Properties of Atomic Nanoclusters, Ed. by J. A. Alonso (Imperial College Press, London, 2005).Google Scholar
  2. 2.
    F. Baletto and R. Ferrando, Rev. Mod. Phys. 77, 371 (2005).CrossRefADSGoogle Scholar
  3. 3.
    D. J. Wales, Energy Landscapes (Cambridge University Press, Cambridge, 2003).Google Scholar
  4. 4.
    Metal Clusters, Ed. by W. Ekardt (Wiley, New York, 1999).Google Scholar
  5. 5.
    Latest Advances in Atomic Clusters Collision: Fission, Fusion, Electron, Ion, and Photon Impact, Ed. by J.-P. Connerade and A. V. Solov’yov (Imperial College Press, London, 2004); Proceedings of the Europhysics Conference International Symposium “Atomic Cluster Collisions: Fission, Fusion, Electron, Ion, and Photon Impact” (ISACC 2003), St. Petersburg, July 18–21, 2003.Google Scholar
  6. 6.
    O. Echt, K. Sattler, and E. Recknagel, Phys. Rev. Lett. 47, 1121 (1981).CrossRefADSGoogle Scholar
  7. 7.
    Clusters of Atoms and Molecules: Theory, Experiment, and Clusters of Atoms, Ed. by H. Haberland (Springer, Berlin, 1994).Google Scholar
  8. 8.
    I. A. Harris, K. A. Norman, R. V. Mulkern, and J. A. Northby, Phys. Rev. Lett. 53, 2390 (1984).CrossRefADSGoogle Scholar
  9. 9.
    J. Farges, M. F. de Feraudy, B. Raoult, and G. Torchet, J. Chem. Phys. 84, 3491 (1986).CrossRefADSGoogle Scholar
  10. 10.
    R. G. Lacerda, M. C. dos Santos, L. R. Tessler, et al., Phys. Rev. B: Condens. Matter 68, 054104 (2003).Google Scholar
  11. 11.
    I. Mähr, F. Zappa, S. Denifl, et al., Phys. Rev. Lett. 98, 023401 (2007).Google Scholar
  12. 12.
    M. P. Hoare and P. Pal, Adv. Phys. 24, 645 (1975).CrossRefADSGoogle Scholar
  13. 13.
    D. J. Wales and J. P. K. Doey, J. Phys. Chem. A 101, 5111 (1997).CrossRefGoogle Scholar
  14. 14.
    G. Romero, C. Barron, and S. Gomez, Comput. Phys. Commun. 123, 87 (1999).CrossRefADSzbMATHGoogle Scholar
  15. 15.
    R. H. Leary and J. P. K. Doye, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 60, R6320 (1999).ADSGoogle Scholar
  16. 16.
    I. A. Solov’yov, A. V. Solov’yov, W. Greiner, et al., Phys. Rev. Lett. 90, 053401 (2003).Google Scholar
  17. 17.
    I. A. Solov’yov, A. V. Solov’yov, and W. Greiner, Int. J. Mod. Phys. E 13, 697 (2004).CrossRefADSGoogle Scholar
  18. 18.
    P. Schwerdtfeger, N. Gaston, R. P. Krawczyk, et al., Phys. Rev. B: Condens. Matter 73, 064112 (2006).Google Scholar
  19. 19.
    I. A. Solov’yov, A. V. Solov’yov, and W. Greiner, in Chemical Physics: New Research, Chapter: Cluster Fusion Algorithm: Application to Lennard-Jones Clusters, Ed. by A. N. Linke (Nova Science, New York, 2006), p. 89.Google Scholar
  20. 20.
    I. A. Solov’yov, A. V. Solov’yov, and W. Greiner, Phys. Rev. A: At., Mol., Opt. Phys. 65, 053203 (2002).Google Scholar
  21. 21.
    A. Lyalin, A. V. Solov’yov, and W. Greiner, Phys. Rev. A: At., Mol., Opt. Phys. 74, 043201 (2006).Google Scholar
  22. 22.
    A. G. Lyalin, I. A. Solov’yov, A. V. Solov’yov, and W. Greiner, Phys. Rev. A: At., Mol., Opt. Phys. 75, 053201 (2007).Google Scholar
  23. 23.
    O. I. Obolensky, I. A. Solov’yov, A. V. Solov’yov, and W. Greiner, Comput. Lett. 1, 313 (2005).CrossRefGoogle Scholar
  24. 24.
    A. G. Lyalin, O. I. Obolensky, A. V. Solov’yov, and W. Greiner, Eur. Phys. J., D 34, 93 (2005).CrossRefADSGoogle Scholar
  25. 25.
    A. G. Lyalin, I. A. Solov’yov, A. V. Solov’yov, and W. Greiner, Phys. Rev. A: At., Mol., Opt. Phys. 67, 063203 (2003).Google Scholar
  26. 26.
    Metal Cluster at Surfaces, Ed. by K. H. Meiwes-Broer (Springer, Berlin, 2002).Google Scholar
  27. 27.
    Proceedings of the International Conference on Clusters at Surfaces (ICCS 2006), Universität Rostock, Warnemünde, Germany, 2006, Ed. by K. H. Meiwes-Broer and R. Berndt (University of Rostock, Warnemünde, 2006).Google Scholar
  28. 28.
    K. Rytkönen, J. Akola, and M. Manninen, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 69, 2054404 (2004).Google Scholar
  29. 29.
    M. Moseler, H. Hakkinen, and U. Landman, Phys. Rev. Lett. 89, 176103 (2002).Google Scholar
  30. 30.
    Y. D. Sun and X. G. Gong, J. Phys.: Condens. Matter 9, 10555 (1997).Google Scholar
  31. 31.
    G. Rossi, C. Mottet, F. Nita, and R. Ferrando, J. Phys. Chem. 9, 10555 (1997).Google Scholar
  32. 32.
    J. W. S. Rayleigh, Proc. R. Soc. London 10, 4 (1879).Google Scholar
  33. 33.
    G. Gamow, Z. Phys. 51, 204 (1928).CrossRefADSGoogle Scholar
  34. 34.
    N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).CrossRefADSzbMATHGoogle Scholar
  35. 35.
    A. G. Lyalin, O. I. Obolensky, A. V. Solov’yov, and W. Greiner, Int. J. Mod. Phys. E 15, 153 (2006).CrossRefADSGoogle Scholar
  36. 36.
    A. G. Lyalin, S. K. Semenov, A. V. Solov’yov, et al., J. Phys. B: At., Mol. Opt. Phys. 33, 3653 (2000).CrossRefADSGoogle Scholar
  37. 37.
    A. G. Lyalin, S. K. Semenov, W. Greiner, and A. V. Solov’yov, Phys. Rev. A: At., Mol., Opt. Phys. 33, 3653 (2002).CrossRefADSGoogle Scholar
  38. 38.
    C. Yannouleas and U. Landman, Chem. Phys. Lett. 210, 437 (1993).CrossRefADSGoogle Scholar
  39. 39.
    D. N. Poenaru, R. A. Gherghescu, A. V. Solov’yov, and W. Greiner, E-print archives, 0704.0847.Google Scholar
  40. 40.
    D. N. Poenaru, R. A. Gherghescu, A. V. Solov’yov, and W. Greiner, E-print archives, 0704.2193.Google Scholar
  41. 41.
    Practical Methods of Optimization, Ed. by R. Fletcher (John Wiley, New York, 1987).zbMATHGoogle Scholar
  42. 42.
    Parameters of Atoms and Atomic Ions, Ed. by A. A. Radzig and B. M. Smirnov (Énergoatomizdat, Moscow, 1986) [in Russian].Google Scholar
  43. 43.
    I. N. Bronshtein and K. A. Semendyayev, Handbook of Mathematics (Nauka, Moscow, 1981; Springer, New York, 1997).Google Scholar
  44. 44.
    V. M. Strutinsky, Zh. Éksp. Teor. Fiz. 45, 1891 (1964) [Sov. Phys. JETP 18, 1298 (1964)].Google Scholar
  45. 45.
    Y. Yamaguchi and J. Gspann, Eur. Phys. J., D 16, 103 (2001).CrossRefADSGoogle Scholar
  46. 46.
    M. Mons and J. L. Calvé, Chem. Phys. 146, 195 (1990).CrossRefADSGoogle Scholar
  47. 47.
    U. Näher, S. Björnholm, S. Frauendorf, et al., Phys. Rep. 285, 245 (1997).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • V. V. Semenikhina
    • 1
  • A. G. Lyalin
    • 1
    • 2
    • 3
    Email author
  • A. V. Solov’yov
    • 1
    • 4
  • W. Greiner
    • 1
  1. 1.Frankfurt Institute for Advanced StudiesJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
  2. 2.Imperial College of LondonThe Blackett LaboratoryLondonUK
  3. 3.Institute of PhysicsSt. Petersburg Strate UniversityPetrodvorets, St. PetersburgRussia
  4. 4.Ioffe Physicotechnical InstituteSt. PetersburgRussia

Personalised recommendations