Advertisement

Reptation and diffusive modes of motion of linear macromolecules

  • V. N. PokrovskiiEmail author
Statistical, Nonlinear, and Soft Matter Physics

Abstract

It is shown that the model of underlying stochastic motion of a macromolecule leads to two modes of motion: reptative and isotropically diffusive. There is a length of a macromolecule M* ≈ 10M e , where M e is “the macro-molecule length between adjacent entanglements,” above which macromolecules of a melt can be regarded as obstacles to motion of each other, and the macromolecules reptate. The transition to the reptation mode of motion is determined by both topological restrictions and local anisotropy of motion. The investigation confirm that the reptation motion determines the M −2 molecular-weight dependence of the self-diffusion coefficient of macromolecules in melts.

PACS numbers

36.20.-r 61.25.Hq 83.10.Mj 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. G. de Gennes, J. Chem. Phys. 55, 572 (1971).CrossRefADSGoogle Scholar
  2. 2.
    M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford Univ. Press, Oxford, 1986).Google Scholar
  3. 3.
    T. P. Lodge, N. A. Rotstein, and S. Prager, Adv. Chem. Phys. 79, 1 (1990).CrossRefGoogle Scholar
  4. 4.
    V. G. Rostiashvili, M. Rehkopf, and T. A. Vilgis, J. Chem. Phys. 110, 639 (1999).CrossRefADSGoogle Scholar
  5. 5.
    V. N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics (Academic, Dordrecht, 2000).Google Scholar
  6. 6.
    Yu. A. Altukhov, V. N. Pokrovskii, and G. V. Pyshnograi, J. Non-Newtonian Fluid Mech. 121, 73 (2004).CrossRefzbMATHGoogle Scholar
  7. 7.
    V. N. Pokrovskii, Physica A (Amsterdam) 366, 88 (2006).ADSGoogle Scholar
  8. 8.
    A. Baumgärter and M. Muthukumar, Adv. Chem. Phys. 94, 625 (1996).CrossRefGoogle Scholar
  9. 9.
    U. Ebert, A. Baumgärtner, and L. Schäfer, Phys. Rev. E 53, 950 (1996).CrossRefADSGoogle Scholar
  10. 10.
    G. Migliorini, V. G. Rostiashvili, and T. A. Vilgis, Eur. Phys. J. B 33, 61 (2003).CrossRefADSGoogle Scholar
  11. 11.
    A. Milchev, V. G. Rostiashvili, and T. A. Vilgis, Europhys. Lett. 66, 384 (2004).CrossRefADSGoogle Scholar
  12. 12.
    B. Dünweg, in Proceedings of the NATO Advanced Study Institute/Euroconference on Computer Simulations of Surfaces and Interfaces, Albena, Bulgaria, 2002, Ed. by B. Dünweg, D. P. Landau, and A. Milchev (Academic, Dordrecht, 2003), p. 77.Google Scholar
  13. 13.
    S.-Q. Wang, J. Polym. Sci., Part B: Polym. Phys. 41, 1589 (2003).CrossRefGoogle Scholar
  14. 14.
    A. L. Kholodenko, Macromol. Theory Simul. 5, 1031 (1996).CrossRefGoogle Scholar
  15. 15.
    S. F. Edwards, Proc. Phys. Soc. 91, 513 (1967).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.The Center for EcodynamicsMoscowRussia

Personalised recommendations