Double resonant Raman scattering in nanographite films

  • A. N. Obraztsov
  • E. A. Obraztsova
  • A. A. Zolotukhin
  • A. V. Tyurnina
Electronic Properties of Solids


Experimental results are presented on Raman scattering in graphite films produced by DC plasmaenhanced chemical vapor deposition from a methane-hydrogen gas mixture. Scanning electron and probe microscopy data show that, depending on substrate material and deposition time, the deposited film is either a mesoporous material consisting of graphite nanocrystallites with basal planes oriented perpendicular to the substrate surface or an atomically flat, nanometer-thick stack of graphene layers parallel to the substrate. A comparative Raman spectroscopy analysis is performed for film samples deposited on nickel and silicon substrates for 5 and 60 min, as well as for highly ordered graphite samples. The Raman spectra of the examined samples correspond to the double resonant scattering mechanism. The behavior of Raman peak position and intensity as functions of excitation wavelength suggests a high degree of structural order in the graphite films deposited on nickel for 5 min. The results obtained are used to show that the thickness of these films is 1.5 ± 0.5 nm.

PACS numbers

78.30.-j 78.67.-n 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science (Washington) 306, 666 (2004).CrossRefADSGoogle Scholar
  2. 2.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Nature (London) 438, 197 (2005).CrossRefADSGoogle Scholar
  3. 3.
    K. S. Novoselov, E. McCann, S. V. Morozov, et al., Nat. Phys. 2, 177 (2006).CrossRefGoogle Scholar
  4. 4.
    J. S. Bunch, A. M. van der Zande, S. S. Verbridge, et al., Science (Washington) 315, 490 (2007).CrossRefADSGoogle Scholar
  5. 5.
    B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, Nat. Phys. 3, 192 (2007).CrossRefGoogle Scholar
  6. 6.
    E. W. Hill, A. K. Geim, K. Novoselov, et al., IEEE Trans. Magn. 42, 2694 (2006).CrossRefADSGoogle Scholar
  7. 7.
    B. Partoens and F. M. Peeters, Phys. Rev. B: Condens. Matter 74, 075404 (2006).Google Scholar
  8. 8.
    I. Pócsik, M. Hundhausen, M. Koós, and L. Ley, J. Non-Cryst. Solids 22–230, 1083 (1998).CrossRefGoogle Scholar
  9. 9.
    R. Saito, A. Jorio, A. G. Souza Filho, et al., Phys. Rev. Lett. 88, 027401 (2002).Google Scholar
  10. 10.
    A. C. Ferrari, J. C. Meyer, V. Scardaci, et al., Phys. Rev. Lett. 97, 187401 (2006).Google Scholar
  11. 11.
    C. Thomsen and S. Reich, Phys. Rev. Lett. 85, 5214 (2000).CrossRefADSGoogle Scholar
  12. 12.
    G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, Zh. Éksp. Teor. Fiz. 126(5), 1083 (2004) [JETP 99 (5), 942 (2004)].Google Scholar
  13. 13.
    Al. A. Zakhidov, A. N. Obraztsov, A. P. Volkov, and D. A. Lyashenko, Zh. Éksp. Teor. Fiz. 127(1), 100 (2005) [JETP 100 (1), 89 (2005)].Google Scholar
  14. 14.
    A. A. Zolotukhin, A. N. Obraztsov, A. O. Ustinov, and A. P. Volkov, Zh. Éksp. Teor. Fiz. 124(6), 1291 (2003) [JETP 97 (6), 1154 (2003)].Google Scholar
  15. 15.
    Al. A. Zakhidov, O. A. Klimenko, I. A. Popov, et al., Pis’ma Zh. Tekh. Fiz. 33(14), 1 (2007) [Tech. Phys. Lett. 33 (7), 586 (2007)].Google Scholar
  16. 16.
    A. Ya. Tontegode, Prog. Surf. Sci. 38, 201 (1991).CrossRefGoogle Scholar
  17. 17.
    Y. Kawashima and G. Katagiri, Phys. Rev. B: Condens. Matter 52, 10053 (1995).Google Scholar
  18. 18.
    R. J. Nemanich and S. A. Solin, Phys. Rev. B: Condens. Matter 20, 392 (1979).ADSGoogle Scholar
  19. 19.
    P. Krekora, Q. Su, and R. Grobe, Phys. Rev. Lett. 92, 040406 (2004).Google Scholar
  20. 20.
    M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2, 620 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. N. Obraztsov
    • 1
  • E. A. Obraztsova
    • 1
  • A. A. Zolotukhin
    • 1
  • A. V. Tyurnina
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations