Advertisement

Journal of Experimental and Theoretical Physics

, Volume 105, Issue 5, pp 1057–1067 | Cite as

Some problems in relativistic thermodynamics

  • É. V. Veitsman
Statistical, Nonlinear, and Soft Matter Physics

Abstract

The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0/√1 − v 2/c 2. Relativistic dependences for heat and mass transfer, for Ohm’s law, and for a viscous flow of a liquid have also been derived.

PACS numbers

03.30.+p 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Planck, Ann. Phys. (Leipzig) 26, 1 (1909).Google Scholar
  2. 2.
    M. von Laue, Die Relativitätstheorie (Veiweg, Braunschweig, 1961, die 7-te Ausgabe; 1911, die erste Ausgabe), pp. 138, 177, 178.Google Scholar
  3. 3.
    X. Ott, Z. Phys. 175, 70 (1963).zbMATHCrossRefADSGoogle Scholar
  4. 4.
    H. Callen and G. Horwitz, J. Phys. 39, 938 (1971).ADSGoogle Scholar
  5. 5.
    R. Hakim and A. Mangeney, Lett. Nuovo Cimento 1S1, 429 (1969).CrossRefGoogle Scholar
  6. 6.
    V. N. Streltsov, JINR-D2-91-367 (1992).Google Scholar
  7. 7.
    I. P. Bazarov, Thermodynamics, 3rd ed. (Vysshaya Shkola, Moscow, 1983; Pergamon, Oxford, 1964), Chap. 8.Google Scholar
  8. 8.
    G. Cavalleri and G. Salgarelli, Nuovo Cimento A 62, 733 (1969).Google Scholar
  9. 9.
    P. T. Landsberg, Essays in Physics (Academic, London, 1970), Vol. 2.Google Scholar
  10. 10.
    D. Eimerl, Ann. Phys. (N.Y.) 91, 481 (1975).CrossRefADSGoogle Scholar
  11. 11.
    Meng Quan-shui and Chang Lin, J. Xi’an Univ. Sci. Technol. 24, 516 (2004).Google Scholar
  12. 12.
    R. Haase, Thermodynamics of Irreversible Processes (Steinkopff, Darmstadt, 1963; Mir, Moscow, 1967; Dover, New York, 1990).Google Scholar
  13. 13.
    S. Garsia-Colin and A. Sandoval-Villalbazo, J. Non-Equilib. Thermodyn. 31, 11 (2006).CrossRefGoogle Scholar
  14. 14.
    G. M. Kremer and F. P. Devecchi, Phys. Rev. D 65, 983515 (2002).CrossRefGoogle Scholar
  15. 15.
    P. Ilg and H. C. Ottinger, Phys. Rev. D 61, 023510 (2000).CrossRefADSGoogle Scholar
  16. 16.
    H. Blas, B. M. Pimentel, and J. L. Tomazelli, Phys. Rev. E 60, 6164 (1999).CrossRefADSGoogle Scholar
  17. 17.
    C. Eckart, Phys. Rev. 58, 919 (1940).zbMATHCrossRefADSGoogle Scholar
  18. 18.
    W. Israel, Ann. Phys. (N.Y.) 100, 310 (1976).CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    R. Maartens and J. Triginer, Phys. Rev. D 56, 4640 (1997).CrossRefADSGoogle Scholar
  20. 20.
    V. N. Hamity, Phys. Rev. 187, 1745 (1969).zbMATHCrossRefADSGoogle Scholar
  21. 21.
    R. Hagedom and K. Redlich, Z. Phys. C 27, 541 (1985).CrossRefADSGoogle Scholar
  22. 22.
    J. E. Krizan, Phys. Lett. A 71, 174 (1979).CrossRefADSGoogle Scholar
  23. 23.
    W. Israel and J. M. Stewart, Ann. Phys. (N.Y.) 118, 341 (1979).CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    E. V. Veitsman, J. Colloid Interface Sci. 265, 174 (2003).CrossRefGoogle Scholar
  25. 25.
    E. V. Veitsman, J. Colloid Interface Sci. 275, 555 (2004).CrossRefGoogle Scholar
  26. 26.
    E. V. Veitsman, J. Colloid Interface Sci. 214, 207 (1999).CrossRefGoogle Scholar
  27. 27.
    V. G. Levich, Course of Theoretical Physics (Fizmatgiz, Moscow, 1962), Vol. 1, Part 2 [in Russian].Google Scholar
  28. 28.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields, 6th ed. (Nauka, Moscow, 1973; Pergamon, Oxford, 1975), p. 458.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  1. 1.Research and Production Enterprise TekhnolazerMoscowRussia

Personalised recommendations