Advertisement

Journal of Experimental and Theoretical Physics

, Volume 105, Issue 5, pp 962–981 | Cite as

Microscopic analysis of wobbling excitations in 156Dy and 162Yb

  • R. G. Nazmitdinov
  • J. Kvasil
Nuclei, Particles, Fields, Gravitation, and Astrophysics

Abstract

In the cranked Nilsson-plus-random-phase approximation, we study low-lying quadrupole excitations of positive parity and negative signature in 156Dy and 162Yb at high spins. Special attention is paid to a consistent description of wobbling excitations and their identification among excited states. A good agreement between the available experimental data and the results of calculations is obtained. We find that the lowest odd-spin γ-vibrational states in 156Dy transform into wobbling excitations after the backbending associated with the transition from an axially symmetric shape to a nonaxial shape. Similar results are predicted for 162Yb. The analysis of electromagnetic transitions uniquely determines the sign of the γ deformation in both nuclei after the transition point.

PACS numbers

21.10.Re 21.60.Jz 27.70.+q 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, New York, 1975; Mir, Moscow, 1977), Vol. 2.Google Scholar
  2. 2.
    S. G. Nilsson and I. Ragnarsson, Shapes and Shells in Nuclear Structure (Cambridge Univ. Press, Cambridge, 1995).Google Scholar
  3. 3.
    P. G. Reinhard, V. O. Nesterenko, E. Suraud, et al., Phys. Rev. A 66, 013206 (2002).Google Scholar
  4. 4.
    I. Bialynicki-Birula and T. Sowinski, Phys. Rev. A 71, 043610 (2005).Google Scholar
  5. 5.
    I. N. Mikhailov and D. Janssen, Phys. Lett. B 72, 303 (1978).CrossRefADSGoogle Scholar
  6. 6.
    D. Janssen, I. N. Mikhailov, R. G. Nazmitdinov, et al., Phys. Lett. B 79, 347 (1978).CrossRefADSGoogle Scholar
  7. 7.
    Y. R. Shimizu and M. Matsuzaki, Nucl. Phys. A 588, 559 (1995).CrossRefADSGoogle Scholar
  8. 8.
    D. Janssen and I. N. Mikhailov, Nucl. Phys. A 318, 390 (1979).CrossRefADSGoogle Scholar
  9. 9.
    E. R. Marshalek, Nucl. Phys. A 331, 429 (1979).CrossRefADSGoogle Scholar
  10. 10.
    S. W. Ødegård et al., Phys. Rev. Lett. 86, 5866 (2001); D. R. Jensen et al., Phys. Rev. Lett. 89, 142503 (2002); Nucl. Phys. A 703, 3 (2002); H. Amro et al., Phys. Lett. B 553, 197 (2003); G. Schönwasser et al., Phys. Lett. B 552, 9 (2003); A. Görgen et al., Phys. Rev. C 69, 031301(R) (2004); D. R. Jensen et al., Eur. Phys. J. A 19, 173 (2004).CrossRefGoogle Scholar
  11. 11.
    I. Hamamoto, Phys. Rev. C 65, 044305 (2002); I. Hamamoto and G. B. Hagemann, Phys. Rev. C 67, 014319 (2003).Google Scholar
  12. 12.
    M. Matsuzaki, Y. R. Shimizu, and K. Matsuyanagi, Phys. Rev. C 65, 041303(R) (2002).Google Scholar
  13. 13.
    M. Matsuzaki, Y. R. Shimizu, and K. Matsuyanagi, Phys. Rev. C 69, 034325 (2004).Google Scholar
  14. 14.
  15. 15.
    F. G. Kondev et al., Phys. Lett. B 437, 35 (1998).CrossRefADSGoogle Scholar
  16. 16.
    J. Kvasil and R. G. Nazmitdinov, Pis’ma Zh. Éksp. Teor. Fiz. 83, 227 (2006) [JETP Lett. 83, 187 (2006)]; Phys. Rev. C 73, 014312 (2006).Google Scholar
  17. 17.
    J. Kvasil, N. Lo Iudice, R. G. Nazmitdinov, et al., Phys. Rev. C 69, 064308 (2004).Google Scholar
  18. 18.
    R. F. Casten, E. A. McCutchan, N. V. Zamfir, et al., Phys. Rev. C 67, 064306 (2003).Google Scholar
  19. 19.
    T. Nakatsukasa, K. Matsuyanagi, S. Mizutori, and Y. R. Shimizu, Phys. Rev. C 53, 2213 (1996).CrossRefADSGoogle Scholar
  20. 20.
    J. Kvasil and R. G. Nazmitdinov, Fiz. Élem. Chastits At. Yad. 17, 613 (1986) [Sov. J. Part. Nucl. 17, 265 (1986)].Google Scholar
  21. 21.
    J. Kvasil, N. Lo Iudice, V. O. Nesterenko, and M. Kopál, Phys. Rev. C 58, 209 (1998).CrossRefADSGoogle Scholar
  22. 22.
    R. Wyss, W. Satula, W. Nazarewicz, and A. Johnson, Nucl. Phys. A 511, 324 (1990).CrossRefADSGoogle Scholar
  23. 23.
    H. Sakamoto and T. Kishimoto, Nucl. Phys. A 501, 205 (1989).CrossRefADSGoogle Scholar
  24. 24.
    W. D. Heiss and R. G. Nazmitdinov, Pis’ma Zh. Éksp. Teor. Fiz. 72, 157 (2000) [JETP Lett. 72, 106 (2000)]; Phys. Rev. C 65, 054304 (2002).Google Scholar
  25. 25.
    R. G. Nazmitdinov, D. Almehed, and F. Dönau, Phys. Rev. C 65, 041307(R) (2002).Google Scholar
  26. 26.
    P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, New York, 1980).Google Scholar
  27. 27.
    E. R. Marshalek, Nucl. Phys. A 275, 416 (1977).CrossRefADSGoogle Scholar
  28. 28.
    D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskiĭ, Quantum Theory of Angular Momentum (Nauka, Moscow, 1975; World Sci., Singapore, 1988).Google Scholar
  29. 29.
    D. Almehed, F. Dönau, and R. G. Nazmitdinov, J. Phys. G 29, 2193 (2003).CrossRefADSGoogle Scholar
  30. 30.
    S. Frauendorf, Rev. Mod. Phys. 73, 463 (2001).CrossRefADSGoogle Scholar
  31. 31.
    R. G. Nazmitdinov, Yad. Fiz. 46, 732 (1987) [Sov. J. Nucl. Phys. 46, 412 (1987)].Google Scholar
  32. 32.
    E. R. Marshalek, Nucl. Phys. A 266, 317 (1976).CrossRefADSGoogle Scholar
  33. 33.
    I. Hamamoto, Nucl. Phys. A 271, 15 (1976).CrossRefADSGoogle Scholar
  34. 34.
    A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, New York, 1969; Mir, Moscow, 1971), Vol. 1.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  1. 1.Departament de FísicaUniversitat de les Illes BalearsPalma de MallorcaSpain
  2. 2.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubna, Moscow oblastRussia
  3. 3.Institute of Particle and Nuclear PhysicsCharles UniversityPraha 8Czech Republic

Personalised recommendations