Journal of Experimental and Theoretical Physics

, Volume 105, Issue 4, pp 675–686

Interaction of relativistically strong electromagnetic waves with a layer of overdense plasma

  • A. V. Korzhimanov
  • V. I. Eremin
  • A. V. Kim
  • M. R. Tushentsov
Atoms, Molecules, Optics

Abstract

Plasma-field structures that arise under the interaction between a relativistically strong electromagnetic wave and a layer of overdense plasma are considered within a quasistationary approximation. It is shown that, together with known solutions, which are nonlinear generalizations of skin-layer solutions, multilayer structures containing cavitation regions with completely removed electrons (ion layers) can be excited when the amplitude of the incident field exceeds a certain threshold value. Under symmetric irradiation, these cavitation regions, which play the role of self-consistent resonators, may amplify the field and accumulate electromagnetic energy.

PACS numbers

52.35.Mw 52.38.-r 52.50.Jm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Joshi and T. Katsouleas, Phys. Today 56, 47 (2003).CrossRefGoogle Scholar
  2. 2.
    A. V. Borovskiĭ and A. L. Galkin, Laser Physics (IzdAt, Moscow, 1996), p. 230 [in Russian].Google Scholar
  3. 3.
    G. A. Mourou, T. Tajima, and S. V. Bulanov, Rev. Mod. Phys. 78, 309 (2006).CrossRefADSGoogle Scholar
  4. 4.
    M. Tabak, J. Hammer, M. E. Glinsky, et al., Phys. Plasmas 1, 1626 (1994).CrossRefADSGoogle Scholar
  5. 5.
    J. Schwinger, Phys. Rev. 82, 664 (1951); P. Chen and T. Tajima, Phys. Rev. Lett. 83, 256 (1999).MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    B. Shen and J. Meyer-ter-Vehn, Phys. Plasmas 8, 1003 (2001).CrossRefADSGoogle Scholar
  7. 7.
    A. G. Litvak, Zh. Éksp. Teor. Fiz. 57, 629 (1970) [Sov. Phys. JETP 30, 344 (1970)].Google Scholar
  8. 8.
    G. Z. Sun, E. Ott, Y. C. Lee, and P. Guzdar, Phys. Fluids 30, 526 (1987).CrossRefADSGoogle Scholar
  9. 9.
    A. I. Akhiezer and R. V. Polovin, Zh. Éksp. Teor. Fiz. 30, 915 (1956) [Sov. Phys. JETP 3, 696 (1956)]; P. Kaw and J. Dawson, Phys. Fluids 13, 472 (1970).Google Scholar
  10. 10.
    J. H. Marburger and R. F. Trooper, Phys. Rev. Lett. 35, 1001 (1975).CrossRefADSGoogle Scholar
  11. 11.
    F. Cattani, A. Kim, D. Anderson, and M. Lisak, Phys. Rev. E 62, 1234 (2000).CrossRefADSGoogle Scholar
  12. 12.
    F. Cattani, A. Kim, D. Anderson, and M. Lisak, Phys. Rev. E 64, 016412 (2001).Google Scholar
  13. 13.
    A. Kim, F. Cattani, D. Anderson, and M. Lisak, Pis’ma Zh. Éksp. Teor. Fiz. 72, 355 (2000) [JETP Lett. 72, 241 (2000)].Google Scholar
  14. 14.
    M. Tushentsov, A. Kim, F. Cattani, et al., Phys. Rev. Lett. 87, 275002 (2001).Google Scholar
  15. 15.
    C. S. Lai, Phys. Rev. Lett. 36, 966 (1976); F. S. Felber and J. H. Marburger, Phys. Rev. Lett. 36, 1176 (1976).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • A. V. Korzhimanov
    • 1
  • V. I. Eremin
    • 1
  • A. V. Kim
    • 1
  • M. R. Tushentsov
    • 2
  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhni NovgorodRussia
  2. 2.University of Texas at AustinAustinUSA

Personalised recommendations