Advertisement

Journal of Experimental and Theoretical Physics

, Volume 105, Issue 3, pp 665–672 | Cite as

Stability of a free-standing liquid-crystal film: The measurement of the interaction between the film surfaces

  • P. V. Dolganov
  • H. T. Nguyen
  • G. Joly
  • E. I. Kats
  • V. K. Dolganov
  • P. Cluzeau
Statistical, Nonlinear, and Soft Matter Physics

Abstract

The interaction energy of the surfaces of a free-standing liquid-crystal film has been determined. The measurements are performed in a smectic phase below the melting temperature of a bulk sample T C, in the temperature range of structural instability of thin films at T > T C, and in a quasi-smectic phase at T > T C. Two modes of smectic-layer motion in the film are detected: they lead to film thinning at T > T C and film thickening at a low temperature. The measurement results are discussed in terms of recent theoretical concepts.

PACS numbers

61.30.-v 61.30.Eb 64.70.Md 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Pieranski, L. Bieliard, J.-Ph. Tournelles, et al., Physica A (Amsterdam) 194, 364 (1993).ADSGoogle Scholar
  2. 2.
    W. H. de Jeu, B. I. Ostrovskii, and A. N. Shalaginov, Rev. Mod. Phys. 75, 181 (2003).CrossRefADSGoogle Scholar
  3. 3.
    T. Stoebe, P. Mach, and C. C. Huang, Phys. Rev. Lett. 73, 1384 (1994).CrossRefADSGoogle Scholar
  4. 4.
    E. I. Demikhov, V. K. Dolganov, and K. P. Meletov, Phys. Rev. E 52, R1285 (1995).CrossRefADSGoogle Scholar
  5. 5.
    V. K. Dolganov, E. I. Demikhov, R. Fouret, and C. Gors, Phys. Lett. A 220, 242 (1996).CrossRefADSGoogle Scholar
  6. 6.
    S. Pankratz, P. M. Johnson, H. T. Nguyen, and C. C. Huang, Phys. Rev. E 58, R2721 (1998).CrossRefADSGoogle Scholar
  7. 7.
    E. A. L. Mol, G. C. L. Wong, J. M. Petit, et al., Physica B (Amsterdam) 248, 191 (1998).ADSGoogle Scholar
  8. 8.
    S. Pankratz, P. M. Johnson, R. Holyst, and C. C. Huang, Phys. Rev. E 60, R2456 (1999).CrossRefADSGoogle Scholar
  9. 9.
    S. Pankratz, P. M. Johnson, A. Paulson, and C. C. Huang, Phys. Rev. E 61, 6689 (2000).CrossRefADSGoogle Scholar
  10. 10.
    P. Cluzeau, G. Joly, H. T. Nguyen, et al., Phys. Rev. E 62, R5899 (2000).CrossRefADSGoogle Scholar
  11. 11.
    A. Zywocinski, F. Picano, P. Oswald, and J. C. Geminard, Phys. Rev. E 62, 8133 (2000).CrossRefADSGoogle Scholar
  12. 12.
    L. V. Mirantsev, Phys. Lett. A 205, 412 (1995).CrossRefADSGoogle Scholar
  13. 13.
    Y. Martinez-Raton, A. M. Somoza, L. Mederos, and D. E. Sullivan, Phys. Rev. E 55, 2030 (1997).CrossRefADSGoogle Scholar
  14. 14.
    E. E. Gorodetskii, E. S. Pikina, and V. E. Podnek, Zh. Éksp. Teor. Fiz. 115, 61 (1999) [JETP 88, 35 (1999)].Google Scholar
  15. 15.
    F. Picano, P. Oswald, and E. Kats, Phys. Rev. E 63, 021705 (2001).Google Scholar
  16. 16.
    A. N. Shalaginov and D. E. Sullivan, Phys. Rev. E 63, 031704 (2001).Google Scholar
  17. 17.
    L. V. Mirantsev, Phys. Rev. E 63, 061701 (2001).Google Scholar
  18. 18.
    A. N. Shalaginov and D. E. Sullivan, Phys. Rev. E 65, 031715 (2002).Google Scholar
  19. 19.
    A. Poniewierski, P. Oswald, and R. Holyst, Langmuir 18, 1511 (2002).CrossRefGoogle Scholar
  20. 20.
    B. M. Ocko, A. Braslau, P. S. Pershan, et al., Phys. Rev. Lett. 57, 94 (1986).CrossRefADSGoogle Scholar
  21. 21.
    P. Cluzeau, G. Joly, H. T. Nguyen, et al., Liq. Cryst. 29, 505 (2002).CrossRefGoogle Scholar
  22. 22.
    L. V. Mirantsev, Liq. Cryst. 27, 491 (2000).CrossRefGoogle Scholar
  23. 23.
    P. Cluzeau, M. Ismaili, A. Anakhar, et al., Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 362, 185 (2001).CrossRefGoogle Scholar
  24. 24.
    J. R. Lalanne, C. Destrade, H. T. Nguyen, and J. P. Marcerou, Phys. Rev. A 44, 6632 (1991).CrossRefADSGoogle Scholar
  25. 25.
    M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1969; Nauka, Moscow, 1970).Google Scholar
  26. 26.
    J. C. Géminard, R. Holyst, and P. Oswald, Phys. Rev. Lett. 78, 1924 (1997).CrossRefADSGoogle Scholar
  27. 27.
    H. Schüring and R. Stannarius, Langmuir 18, 9735 (2002).CrossRefGoogle Scholar
  28. 28.
    P. V. Dolganov, P. Cluzeau, G. Joly, et al., Phys. Rev. E 72, 031713 (2005).Google Scholar
  29. 29.
    P. Oswald, F. Picano, and F. Caillier, Phys. Rev. E 68, 061701 (2003).Google Scholar
  30. 30.
    P. Mach, C. C. Huang, T. Stoebe, et al., Langmuir 14, 4330 (1998).CrossRefGoogle Scholar
  31. 31.
    M. Veum, C. Pettersen, P. Mach, et al., Phys. Rev. E 61, R2192 (2000).CrossRefADSGoogle Scholar
  32. 32.
    R. Jaquet and F. Schneider, Phys. Rev. E 67, 021707 (2003).Google Scholar
  33. 33.
    S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1982).Google Scholar
  34. 34.
    P. G. De Gennes, Rev. Mod. Phys. 57, 827 (1985).CrossRefADSGoogle Scholar
  35. 35.
    P. Ziherl, Phys. Rev. E 61, 4636 (2000).CrossRefADSGoogle Scholar
  36. 36.
    B. Markun and S. Žumer, Phys. Rev. E 73, 031702 (2006).Google Scholar
  37. 37.
    I. N. de Oliveira and M. L. Lyra, Phys. Rev. E 70, 050702(R) (2004).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • P. V. Dolganov
    • 1
  • H. T. Nguyen
    • 2
  • G. Joly
    • 3
  • E. I. Kats
    • 4
    • 5
  • V. K. Dolganov
    • 1
  • P. Cluzeau
    • 2
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Centre de Recherche Paul PascalCNRSPessacFrance
  3. 3.Laboratoire de Dynamique et des Matériaux MoléculairesUMR CNRS 8024Villeneuve d’AscqFrance
  4. 4.Laue-Langevin InstituteGrenobleFrance
  5. 5.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations