Advertisement

Journal of Experimental and Theoretical Physics

, Volume 105, Issue 3, pp 655–664 | Cite as

Polymer dynamics in chaotic flows with a strong shear component

Statistical, Nonlinear, and Soft Matter Physics

Abstract

We consider the dynamics of a polymer molecule injected into a chaotic flow with a strong mean shear component. The polymer experiences aperiodic tumbling in such flows. We consider a simplified model of the chaotic velocity field given by the superposition of a steady shear flow and a large-scale isotropic short-correlated random component. In the framework of this model, we present a detailed study of the statistical properties of single-polymer dynamics. We obtain the stationary probability distribution function of the polymer orientation, find the distribution of time periods between consequent events of tumbling, and find the tails of the polymer size distribution.

PACS numbers

83.80.Rs 83.50.Ax 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. A. Toms, in Proceedings of the International Congress of Rheology, Holland, 1948 (North-Holland, Amsterdam, 1949), p. II–135.Google Scholar
  2. 2.
    J. L. Lumley, Annu. Rev. Fluid Mech. 1, 367 (1969); J. Polym. Sci., Part D: Macromol. Rev. 7, 263 (1973).CrossRefADSGoogle Scholar
  3. 3.
    J. L. Lumley, Symp. Math. 9, 315 (1972).Google Scholar
  4. 4.
    A. Groisman and V. Steinberg, Nature 405, 53 (2000); Phys. Rev. Lett. 86, 934 (2001).CrossRefADSGoogle Scholar
  5. 5.
    A. Groisman and V. Steinberg, New J. Phys. 6, 29 (2004).CrossRefADSGoogle Scholar
  6. 6.
    E. Balkovsky, A. Fouxon, and V. Lebedev, Phys. Rev. Lett. 84, 4765 (2000); Phys. Rev. E 64, 056301 (2001).CrossRefADSGoogle Scholar
  7. 7.
    M. Chertkov, Phys. Rev. Lett. 84, 4761 (2000).CrossRefADSGoogle Scholar
  8. 8.
    A. Fouxon and V. Lebedev, Phys. Fluids 15, 2060 (2003).CrossRefADSGoogle Scholar
  9. 9.
    P. G. de Gennes, J. Chem. Phys. 60, 5030 (1974).CrossRefGoogle Scholar
  10. 10.
    T. T. Perkins, D. E. Smith, and S. Chu, Science 276, 2016 (1997).CrossRefGoogle Scholar
  11. 11.
    D. E. Smith and S. Chu, Science 281, 1335 (1998).CrossRefADSGoogle Scholar
  12. 12.
    D. E. Smith, H. P. Babcock, and S. Chu, Science 283, 1724 (1999).CrossRefADSGoogle Scholar
  13. 13.
    J. S. Hur, E. Shaqfeh, H. P. Babcock, et al., J. Rheol. 45, 421 (2001).CrossRefADSGoogle Scholar
  14. 14.
    S. Gerashchenko, C. Chevallard, and V. Steinberg, Europhys. Lett. 71, 221 (2005).CrossRefADSGoogle Scholar
  15. 15.
    R. G. Larson, The Structure and Rheology of Complex Fluids (Oxford Univ. Press, Oxford, 1999).Google Scholar
  16. 16.
    A. Celani, A. Puliafito, and K. Turitsyn, Europhys. Lett. 70, 439 (2005).CrossRefGoogle Scholar
  17. 17.
    A. Puliafito and K. Turitsyn, Physica D (Amsterdam) 211, 9 (2005).MATHADSMathSciNetGoogle Scholar
  18. 18.
    R. E. Teixeira, H. P. Babcock, E. Shaqfeh, and S. Chu, Macromolecules 38, 581 (2005).CrossRefGoogle Scholar
  19. 19.
    J. S. Hur, E. Shaqfeh, and R. G. Larson, J. Rheol. 44, 713 (2000).CrossRefADSGoogle Scholar
  20. 20.
    M. Chertkov, I. Kolokolov, V. Lebedev, and K. Turitsyn, J. Fluid Mech. 531, 251 (2005).MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    E. J. Hinch and L. G. Leal, J. Fluid Mech. 52, 683 (1972).MATHCrossRefADSGoogle Scholar
  22. 22.
    G. K. Batchelor, J. Fluid Mech. 5, 113 (1959).MATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    R. H. Kraichnan, Phys. Fluids 10, 1417 (1967); J. Fluid Mech. 47, 525 (1971); J. Fluid Mech. 67, 155 (1975).CrossRefGoogle Scholar
  24. 24.
    G. Falkovich, C. Gawedzky, and M. Vergassola, Rev. Mod. Phys. 73, 913 (2001).CrossRefADSGoogle Scholar
  25. 25.
    E. J. Hinch, Phys. Fluids 20, S22 (1977).CrossRefADSGoogle Scholar
  26. 26.
    R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids (Wiley, New York, 1987).Google Scholar
  27. 27.
    A. A. Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow, 1987; North-Holland, Amsterdam, 1988).Google Scholar
  28. 28.
    R. Ellis, Entropy, Large Deviations, and Statistical Mechanics (Springer, Berlin, 1985).MATHGoogle Scholar
  29. 29.
    E. Balkovsky and A. Fouxon, Phys. Rev. E 60, 4164 (1999).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsMoscowRussia
  2. 2.Theoretical DivisionLANLLos AlamosUSA

Personalised recommendations