Journal of Experimental and Theoretical Physics

, Volume 105, Issue 3, pp 610–616 | Cite as

Relaxation of the order parameter in the BCS model

Order, Disorder, and Phase Transition in Condensed Systems
  • 36 Downloads

Abstract

Relaxation of the order parameter of a “pure” superconductor due to the electron-phonon interaction is considered in a homogeneous case. The process of relaxation has a simple physical interpretation as the variation of the number of electrons in Cooper pairs due to excitation collisions accompanied by the absorption and emission of phonons. It is shown that, in the neighborhood of the critical temperature, the relaxation time of the modulus of the order parameter is much greater than the time between excitation collisions.

PACS numbers

74.20.Fg 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bardin, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106, 162 (1957).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    N. N. Bogolyubov, Zh. Éksp. Teor. Fiz. 34, 58 (1958) [Sov. Phys. JETP 7, 41 (1958)].Google Scholar
  3. 3.
    Nonequilibrium Superconductivity, Ed. by D. N. Langenberg and A. I. Larkin (North-Holland, Amsterdam, 1986).Google Scholar
  4. 4.
    N. Kopnin, Theory of Nonequilibrium Superconductivity (Clarendron, Oxford, 2001).Google Scholar
  5. 5.
    A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskiĭ, Methods of Quantum Field Theory in Statistical Physics (Fizmatgiz, Moscow, 1962; Prentice-Hall, Englewood Cliffs, N.J., 1963).Google Scholar
  6. 6.
    A. F. Volkov and Sh. M. Kogan, Zh. Éksp. Teor. Fiz. 65, 2039 (1973) [Sov. Phys. JETP 38, 1018 (1973)].Google Scholar
  7. 7.
    R. A. Barankov, L. S. Levitov, and B. Z. Spivak, Phys. Rev. Lett. 93, 160401 (2004).Google Scholar
  8. 8.
    E. A. Yuzbashyan, B. L. Altshuler, V. B. Kuznetsov, and V. Z. Enolskii, cond-mat/0407501 (2004); condmat/0505493 (2005).Google Scholar
  9. 9.
    S. V. Iordanskiĭ and R. B. Saptsov, Pis’ma Zh. Éksp. Teor. Fiz. 83, 414 (2006) [JETP Lett. 83, 355 (2006)].Google Scholar
  10. 10.
    R. J. Watts-Tobin, Y. Kraehenbuehl, and L. Kramer, J. Low Temp. Phys. 42, 459 (1981).CrossRefGoogle Scholar
  11. 11.
    E. M. Lifshitz and L. P. Pitaevskiĭ, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1978; Pergamon, New York, 1980), Part 2.Google Scholar
  12. 12.
    N. N. Bogolyubov, D. N. Zubarev, and Yu. A. Tserkovnikov, Dokl. Akad. Nauk SSSR 117, 788 (1957) [Sov. Phys. Dokl. 2, 535 (1958)].Google Scholar
  13. 13.
    L. P. Gor’kov, Zh. Éksp. Teor. Fiz. 34, 735 (1958) [Sov. Phys. JETP 7, 505 (1958)].Google Scholar
  14. 14.
    A. G. Aronov, Yu. M. Galperin, V. L. Gurevich, and V. I. Kozub, in Nonequilibrium Superconductivity, Ed. by D. N. Langenberg and A. I. Larkin (North-Holland, Amsterdam, 1986), p. 325.Google Scholar
  15. 15.
    M. Tinkham and J. Clarke, Phys. Rev. Lett. 28, 1366 (1972).CrossRefADSGoogle Scholar
  16. 16.
    A. J. Leggett and S. Takagi, Ann. Phys. (N.Y.) 106, 79 (1977).CrossRefADSGoogle Scholar
  17. 17.
    C. J. Pethick and H. Smith, Ann. Phys. 119, 133 (1979).CrossRefADSGoogle Scholar
  18. 18.
    A. Schmid, Phys. Rev. Lett. 38, 922 (1977).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • S. V. Iordanskii
    • 1
    • 2
  • R. B. Saptsov
    • 1
  • E. A. Brener
    • 2
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Institut für FestkörperforschungJülichGermany

Personalised recommendations