Advertisement

Interaction between a composite compression wave and a vortex in a thermodynamically nonideal medium

  • A. V. Konyukhov
  • A. P. Likhachev
  • V. E. Fortov
  • A. M. Oparin
  • S. I. Anisimov
Statistical, Nonlinear, and Soft Matter Physics

Abstract

A numerical analysis is presented of two-dimensional interaction between a transverse vortex and a composite compression wave that can exist in a thermodynamically nonideal medium. It is shown that the interaction of a composite wave involving a “neutrally stable” shock with a vortex generates weakly damped outgoing acoustic waves; i.e., the shock is a source of sound. This phenomenon increases the post-shock acoustic noise level in an initially turbulent flow.

PACS numbers

47.20.Hw 47.40.Nm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Ellzey and M. R. Henneke, Fluid Dyn. Res. 27, 53 (2000).CrossRefGoogle Scholar
  2. 2.
    Tarou Shimizu, Yodai Watanabe, and Tsutomu Kambe, Fluid Dyn. Res. 27, 65 (2000).CrossRefADSGoogle Scholar
  3. 3.
    S. P. D’yakov, Zh. Éksp. Teor. Fiz. 27, 288 (1954).MathSciNetGoogle Scholar
  4. 4.
    V. M. Kontorovich, Zh. Éksp. Teor. Fiz. 33, 1525 (1957) [Sov. Phys. JETP 6, 1179 (1957)].Google Scholar
  5. 5.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics, 3rd ed. (Nauka, Moscow, 1986; Pergamon, New York, 1987).Google Scholar
  6. 6.
    N. M. Kuznetsov, Usp. Fiz. Nauk 159, 493 (1989) [Sov. Phys. Usp. 32, 993 (1989)].Google Scholar
  7. 7.
    A. V. Konyukhov, A. P. Likhachev, A. M. Oparin, et al., Zh. Éksp. Teor. Fiz. 125, 927 (2004) [JETP 98, 811 (2004)].Google Scholar
  8. 8.
    A. L. Ni, S. G. Sugak, and V. E. Fortov, Teplofiz. Vys. Temp. 24, 564 (1986).Google Scholar
  9. 9.
    G. Ya. Galin, Dokl. Akad. Nauk SSSR 120, 730 (1958) [Sov. Phys. Dokl. 2, 503 (1959)].MathSciNetGoogle Scholar
  10. 10.
    Ya. B. Zel’dovich and Yu. P. Raĭzer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, 2nd ed. (Nauka, Moscow, 1966; Academic, New York, 1966), Vol. 1.Google Scholar
  11. 11.
    J. Y. Yang and C. A. Hsu, AIAA J. 30, 1570 (1992).zbMATHADSCrossRefGoogle Scholar
  12. 12.
    P. L. Roe, J. Comput. Phys. 43, 357 (1981).zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    P. Glaister, J. Comput. Phys. 74, 382 (1988).zbMATHCrossRefADSGoogle Scholar
  14. 14.
    A. Harten, J. Comput. Phys. 49, 357 (1983).zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    C.-W. Shu and S. Osher, J. Comput. Phys. 77, 439 (1988).zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    J. Glimm, C. Klingenberg, O. McBryan, et al., Adv. Appl. Math. 6, 259 (1985).zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • A. V. Konyukhov
    • 1
  • A. P. Likhachev
    • 1
  • V. E. Fortov
    • 1
  • A. M. Oparin
    • 2
  • S. I. Anisimov
    • 3
  1. 1.Joint Institute of High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Institute for Computer-Aided DesignRussian Academy of SciencesMoscowRussia
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations