Advertisement

Journal of Experimental and Theoretical Physics

, Volume 103, Issue 6, pp 897–903 | Cite as

Infrared spectroscopy of the intermediate-valence semiconductor YbB12

  • B. P. Gorshunov
  • A. S. Prokhorov
  • I. E. Spektor
  • A. A. Volkov
  • M. Dressel
  • F. Iga
Electronic Properties of Solids

Abstract

The dynamic conductivity and permittivity spectra of the intermediate-valence compound YbB12 are measured in the frequency range (6–104) cm−1 (quantum energy 0.75 meV-1.24 eV) at temperatures of 5–300 K. Analysis of the spectral singularities associated with the response of free charge carriers has made it possible for the first time to determine the temperature dependences of their microscopic parameters, viz., concentration, effective mass, relaxation frequency and time, mobility, and plasma frequency. It is shown that the relaxation frequency decreases upon cooling from 300 K to the coherence temperature T * = 70 K for YbB12, which is mainly associated with the phonon mechanism of scattering of charge carriers. For cooling below the coherence temperature T * = 70 K, the temperature dependence of the relaxation frequency for charge carriers of the Fermi-liquid type is found to be γ ∼ γ0 + T 2, while their effective mass and relaxation time increase, respectively, to m *(20 K) = 34m 0 (m 0 is the free electron mass) and τ(20 K) = 4 × 10−13 s, indicating the establishment of coherent scattering of carriers from localized magnetic moments of the f centers. At a temperature of T = 5 K, the conductivity spectrum contains an absorption line at a frequency of 22 cm−1 (2.7 meV); the origin of this line can be associated with the exciton-polaron bound state. Since such a state was observed earlier in other intermediate-valence semiconductors (such as SmB6, TmSe1−x Te, and (Sm, Y)S), it is probably typical of this class of compounds.

PACS numbers

71.27.+a 75.30.Mb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Wachter, Handbook of the Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner, L. Eyring, and S. Hufner (North-Holland, Amsterdam, 1994), Vol. 19.Google Scholar
  2. 2.
    L. Degiorgi, Rev. Mod. Phys. 71, 687 (1999).CrossRefADSGoogle Scholar
  3. 3.
    H. R. Ott and Z. Fisk, Handbook on the Physics and Chemistry of the Actinides, Ed. by A. J. Freeman and G. H. Lander (Elsevier, Amsterdam, 1987).Google Scholar
  4. 4.
    Z. Fisk, W. Hess, C. J. Pethick, et al., Science 239, 33 (1988).CrossRefADSGoogle Scholar
  5. 5.
    M. Dressel, N. Kasper, and K. Petukhov, Phys. Rev. Lett. 88, 186404 (2002).Google Scholar
  6. 6.
    B. Gorshunov, N. Sluchanko, and A. Volkov, Phys. Rev. B 59, 1808 (1999).CrossRefADSGoogle Scholar
  7. 7.
    N. E. Sluchanko, A. A. Volkov, V. V. Glushkov, et al., Zh. Éksp. Teor. Fiz. 115, 970 (1999) [JETP 88, 533 (1999)].Google Scholar
  8. 8.
    B. P. Gorshunov, A. S. Prokhorov, I. E. Spektor, et al., Zh. Éksp. Teor. Fiz. 128, 1047 (2005) [JETP 101, 913 (2005)].Google Scholar
  9. 9.
    T. Susaki, Y. Takeda, M. Arita, et al., Phys. Rev. Lett. 82, 992 (1999).CrossRefADSGoogle Scholar
  10. 10.
    S. Hiura, F. Iga, N. Takamoto, et al., Physica B (Amsterdam) 281–282, 271 (2000).Google Scholar
  11. 11.
    S. Kawasaki, N. Takamoto, Y. Narumi, et al., Physica B (Amsterdam) 281–282, 269 (2000).Google Scholar
  12. 12.
    P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, 1991).Google Scholar
  13. 13.
    P. Alekseev, E. V. Nefeodova, U. Staub, et al., Phys. Rev. B 63, 064411 (2001).Google Scholar
  14. 14.
    T. Susaki, A. Sekiyama, K. Kobayashi, et al., Phys. Rev. Lett. 77, 4269 (1996).CrossRefADSGoogle Scholar
  15. 15.
    F. Iga, Y. Takakuwa, N. Kasaya, et al., Solid State Commun. 50, 903 (1984).CrossRefGoogle Scholar
  16. 16.
    M. Kasaya, F. Iga, K. Negishi, et al., J. Magn. Magn. Mater. 31–34, 437 (1983).CrossRefGoogle Scholar
  17. 17.
    F. Iga, N. Shimizu, and T. Takabatake, J. Magn. Magn. Mater. 177–181, 337 (1998).CrossRefGoogle Scholar
  18. 18.
    F. Iga, M. Kasaya, and T. Kasuya, J. Magn. Magn. Mater. 52, 279 (1985).CrossRefADSGoogle Scholar
  19. 19.
    T. Susaki, Y. Takeda, M. Arita, et al., Phys. Rev. Lett. 82, 992 (1999).CrossRefADSGoogle Scholar
  20. 20.
    F. Iga, M. Kasaya, and T. Kasuya, J. Magn. Magn. Mater. 76–77, 156 (1988).CrossRefGoogle Scholar
  21. 21.
    T. Ekino, H. Umeda, F. Iga, et al., Physica B (Amsterdam) 261, 315 (1999).ADSGoogle Scholar
  22. 22.
    T. Altshuler and M. S. Bresler, Physica B (Amsterdam) 315, 150 (2002).ADSGoogle Scholar
  23. 23.
    M. Kasuya, F. Iga, and K. Negishi, J. Magn. Magn. Mater. 31–34, 437 (1983).CrossRefGoogle Scholar
  24. 24.
    M. Kasaya, F. Iga, M. Takigawa, and T. Kasuya, J. Magn. Magn. Mater. 47–48, 429 (1985).CrossRefGoogle Scholar
  25. 25.
    F. Iga, S. Hiura, J. Klijn, et al., Physica B (Amsterdam) 259–261, 312 (1999).Google Scholar
  26. 26.
    E. V. Nefeodova, P. A. Alekseev, J.-M. Mignot, et al., Phys. Rev. B 60, 13507 (1999).CrossRefADSGoogle Scholar
  27. 27.
    J.-M. Mignot, P. A. Alekseev, K. S. Nemkovski, et al., Phys. Rev. Lett. 94, 247204 (2005).Google Scholar
  28. 28.
    H. Okamura, M. Matsunami, T. Inaoka, et al., Phys. Rev. B 62, R13265 (2000).CrossRefADSGoogle Scholar
  29. 29.
    H. Okamura, S. Kimura, H. Shinozaki, et al., Phys. Rev. B 58, R7496 (1998).CrossRefADSGoogle Scholar
  30. 30.
    H. Okamura, T. Michizawa, T. Nanbe, et al., J. Phys. Soc. Jpn. 74, 1954 (2005).CrossRefADSGoogle Scholar
  31. 31.
    G. Kozlov and A. Volkov, in Millimeter and Submillimeter Spectroscopy of Solids, Ed. by G. Gruner (Springer, Berlin, 1998).Google Scholar
  32. 32.
    A. V. Sokolov, Optical Properties of Metals (Fizmatgiz, Moscow, 1961; Elsevier, New York, 1967).Google Scholar
  33. 33.
    T. Takabatake, F. Iga, T. Yoshino, et al., J. Magn. Magn. Mater. 177–178, 277 (1998).CrossRefGoogle Scholar
  34. 34.
    J. W. Allen and J. C. Mikkelsen, Phys. Rev. B 15, 2952 (1977).CrossRefADSGoogle Scholar
  35. 35.
    A. V. Puchkov, D. N. Basov, and T. Timusk, J. Phys.: Condens. Matter 8, 10049 (1996).CrossRefADSGoogle Scholar
  36. 36.
    M. Dressel and G. Gruner, Electrodynamics of Solids (Cambridge Univ. Press, Cambridge, 2002).Google Scholar
  37. 37.
    T. Susaki, Y. Takeda, M. Arita, et al., Physica B (Amsterdam) 281–282, 282 (2000).Google Scholar
  38. 38.
    C. M. Warma and Y. Yafet, Phys. Rev. B 13, 2950 (1976).CrossRefADSGoogle Scholar
  39. 39.
    A. J. Millis and P. A. Lee, Phys. Rev. 35, 3394 (1987).CrossRefADSGoogle Scholar
  40. 40.
    N. E. Bickers, D. L. Cox, and J. W. Wilkins, Phys. Rev. B 36, 2036 (1987).CrossRefADSGoogle Scholar
  41. 41.
    R. T. Beach and R. W. Christy, Phys. Rev. B 16, 5277 (1977).CrossRefADSGoogle Scholar
  42. 42.
    G. R. Parkins, W. E. Lawrence, and R. W. Christy, Phys. Rev. B 23, 6408 (1981).CrossRefADSGoogle Scholar
  43. 43.
    K. A. Kikoin, J. Phys. C: Solid State Phys. 17, 6671 (1984).CrossRefADSGoogle Scholar
  44. 44.
    K. A. Kikoin and A. S. Mishenko, J. Phys. C: Solid State Phys. 2, 6491 (1990).Google Scholar
  45. 45.
    K. A. Kikoin and A. S. Mishchenko, Zh. Éksp. Teor. Fiz. 104, 3810 (1993) [JETP 77, 828 (1993)].Google Scholar
  46. 46.
    S. Curnoe and K. A. Kikoin, Phys. Rev. B 61, 15714 (2000).CrossRefADSGoogle Scholar
  47. 47.
    J. Neuenschwander and P. Wachter, Phys. Rev. B 41, 12693 (1990).CrossRefADSGoogle Scholar
  48. 48.
    P. A. ALekseev, J.-M. Mignot, E. V. Nefeodova, et al., JETP Lett. 79, 92 (2004).CrossRefGoogle Scholar
  49. 49.
    N. E. Sluchanko, V. V. Glushkov, B. P. Gorshunov, et al., Phys. Rev. B 61, 9906 (2000).CrossRefADSGoogle Scholar
  50. 50.
    N. E. Sluchanko, V. V. Glushkov, S. V. Demishev, et al., Phys. Rev. B 64, 153103 (2001).Google Scholar
  51. 51.
    T. S. Altshuler, Yu. V. Goryunov, M. S. Bresler, et al., Phys. Rev. B 68, 014425 (2003).Google Scholar
  52. 52.
    T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-Electronics (Butterworths, London, 1973; Mir, Moscow, 1976).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • B. P. Gorshunov
    • 1
  • A. S. Prokhorov
    • 1
  • I. E. Spektor
    • 1
  • A. A. Volkov
    • 1
  • M. Dressel
    • 2
  • F. Iga
    • 3
  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Physikalisches InstitutUniversität StuttgartGermany
  3. 3.Graduate School of ADSMHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations