Journal of Experimental and Theoretical Physics

, Volume 103, Issue 2, pp 183–197 | Cite as

Ablated matter expansion and crater formation under the action of ultrashort laser pulse

  • S. I. Anisimov
  • V. V. Zhakhovskiĭ
  • N. A. Inogamov
  • K. Nishihara
  • Yu. V. Petrov
  • V. A. Khokhlov
Atoms, Molecules, Optics


The action of a subpicosecond laser pulse on a target made of an absorbing condensed substance is considered. The propagation of an electron heat conduction wave and the crystal lattice heating prior to the hydrodynamic expansion of the target are analyzed. In these initial interaction stages, a heated layer with a thickness of d T is formed at the target surface. The dependence of d T on the absorbed laser energy density F[J/cm2] is evaluated. The motion of ablated matter in the expansion stage is described using a numerical solution of the equations of gasdynamics and the results of molecular dynamics (MD) simulations. The MD simulations are performed using a large number (∼103) of parallel processors, which allows the number of model atoms to be increased up to a level (about 3.5 × 107) close to that encountered under real experimental conditions.

PACS numbers

79.20.Ds 81.16.Mk 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. von der Linde and K. Sokolowski-Tinten, Appl. Surf. Sci. 154–155, 1 (2000).CrossRefGoogle Scholar
  2. 2.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, et al., Phys. Rev. Lett. 81, 224 (1998).CrossRefADSGoogle Scholar
  3. 3.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, and D. von der Linde, Appl. Surf. Sci. 127–129, 755 (1998).CrossRefGoogle Scholar
  4. 4.
    B. C. Stuart, M. D. Feit, S. Herman, et al., J. Opt. Soc. Am. B 13, 459 (1996).ADSGoogle Scholar
  5. 5.
    S. I. Anisimov and B. Rethfeld, Proc. SPIE 3093, 192 (1997).ADSGoogle Scholar
  6. 6.
    N. A. Inogamov, A. M. Oparin, Yu. V. Petrov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 69, 284 (1999) [JETP Lett. 69, 310 (1999)].Google Scholar
  7. 7.
    M. B. Agranat, S. I. Anisimov, S. I. Ashitkov, et al., Zh. Éksp. Teor. Fiz. 113, 2162 (1998) [JETP 86, 1184 (1998)].Google Scholar
  8. 8.
    V. V. Zhakhovskiĭ, K. Nishikhara, S. I. Anisimov, and N. A. Inogamov, Pis’ma Zh. Éksp. Teor. Fiz. 71, 241 (2000) [JETP Lett. 71, 167 (2000)].Google Scholar
  9. 9.
    V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, Appl. Phys. A 78, 483 (2004).CrossRefADSGoogle Scholar
  10. 10.
    M. Hashida, A. F. Semerok, O. Gobert, et al., Appl. Surf. Sci. 197–198, 862 (2002).CrossRefGoogle Scholar
  11. 11.
    T. E. Itina, J. Hermann, Ph. Delaporte, and M. Sentis, Thin Solid Films 453–454, 513 (2004).CrossRefGoogle Scholar
  12. 12.
    D. S. Ivanov and L. V. Zhigilei, Phys. Rev. B 68, 064114 (2003).Google Scholar
  13. 13.
    C. Schaefer, H. M. Urbassek, and L. V. Zhigilei, Phys. Rev. B 66, 115404 (2002).Google Scholar
  14. 14.
    P. Lorazo, L. J. Lewis, and M. Meunier, Phys. Rev. Lett. 91, 225502 (2003).Google Scholar
  15. 15.
    M. I. Kaganov, I. M. Lifshits, and L. V. Tanatarov, Zh. Éksp. Teor. Fiz. 31, 242 (1956) [Sov. Phys. JETP 4, 173 (1956)].Google Scholar
  16. 16.
    Yu. V. Petrov, Laser Part. Beams 23, 283 (2005).CrossRefADSGoogle Scholar
  17. 17.
    A. V. Lugovskoy and I. Bray, Phys. Rev. B 60, 3279 (1999).CrossRefADSGoogle Scholar
  18. 18.
    B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, Phys. Rev. B 65, 214303 (2002).Google Scholar
  19. 19.
    L. A. Fal’kovskiĭ and E. Zh. Mishchenko, JETP 88, 84 (1999).CrossRefADSGoogle Scholar
  20. 20.
    S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, Zh. Éksp. Teor. Fiz. 66, 776 (1974) [Sov. Phys. JETP 39, 375 (1974)].ADSGoogle Scholar
  21. 21.
    Physical Values: Handbook, Ed. by I. S. Grigor’ev and E. Z. Meĭlikhov (Énergoatomizdat, Moscow, 1991) [in Russian].Google Scholar
  22. 22.
    N. A. Inogamov, A. M. Oparin, Yu. V. Petrov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 69, 284 (1999) [JETP Lett. 69, 310 (1999)].Google Scholar
  23. 23.
    S. I. Anisimov, V. V. Zhakhovskiĭ, N. A. Inogamov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 77, 731 (2003) [JETP Lett. 77, 606 (2003)].Google Scholar
  24. 24.
    A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, Equations of State of Metals at High Energy Densities (Inst. Probl. Khim. Fiz. Ross. Akad. Nauk, Chernogolovka, 1992) [in Russian].Google Scholar
  25. 25.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954; Inostrannaya Literatura, Moscow, 1961).zbMATHGoogle Scholar
  26. 26.
    S. I. Anisimov, N. A. Inogamov, and B. Rethfeld, Zh. Éksp. Teor. Fiz. 115, 2091 (1999) [JETP 88, 1143 (1999)].Google Scholar
  27. 27.
    T. Antoun, L. Seaman, D. R. Curran, G. I. Kanel, S. V. Razorenov, and A. V. Utkin, Spall Fracture (Springer, New York, 2003).Google Scholar
  28. 28.
    G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Impact-Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].Google Scholar
  29. 29.
    Y. Choi, T. Ree, and F. H. Ree, J. Chem. Phys. 99, 9917 (1993).CrossRefADSGoogle Scholar
  30. 30.
    A. A. Samarskiĭ and Yu. P. Popov, Difference Methods of Solution of Problems in Gas Dynamics, 2nd ed. (Nauka, Moscow, 1980) [in Russian].Google Scholar
  31. 31.
    F. H. Ree, J. Chem. Phys. 73, 5401 (1980).CrossRefADSGoogle Scholar
  32. 32.
    A. Yu. Kuksin, in Physics of Extreme States of Substance-2005 (Inst. Probl. Khim. Fiz. Ross. Akad. Nauk, Chemogolovka, 2005), p. 168 [in Russian].Google Scholar
  33. 33.
    V. S. Nikiforovskiĭ and E. I. Shemyakin, Dynamical Destruction of Solids (Nauka, Novosibirsk, 1979) [in Russian].Google Scholar
  34. 34.
    S. I. Tkachenko, V. S. Vorob’ev, and S. P. Malyshenko, Appl. Phys. Lett. 82, 4047 (2003).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • S. I. Anisimov
    • 1
  • V. V. Zhakhovskiĭ
    • 2
    • 3
  • N. A. Inogamov
    • 1
  • K. Nishihara
    • 3
  • Yu. V. Petrov
    • 1
  • V. A. Khokhlov
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Institute for High Energy Densities, Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Laser EngineeringOsaka UniversityOsakaJapan

Personalised recommendations