Free-field representation of permutation branes in Gepner models

  • S. E. Parkhomenko
Nuclei, Particles, Fields, Gravitation, and Astrophysics

Abstract

We consider a free-field realization of Gepner models based on the free-field realization of N = 2 superconformal minimal models. Using this realization, we analyze the A/B-type boundary conditions starting from the ansatz with the left-moving and right-moving free-field degrees of freedom glued at the boundary by an arbitrary constant matrix. We show that the only boundary conditions consistent with the singular vector structure of unitary minimal model representations are given by permutation matrices, thereby yielding an explicit free-field construction of the permutation branes of Recknagel.

PACS numbers

11.25.Hf 11.25.Pm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Recknagel and V. Schomerus, Nucl. Phys. B 531, 185 (1998); hep-th/9712186.MATHMathSciNetCrossRefADSGoogle Scholar
  2. 2.
    D. Gepner, Nucl. Phys. B 296, 757 (1988).MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    T. Eguchi, H. Ooguri, A. Taormina, and S.-K. Yang, Nucl. Phys. B 315, 193 (1989).MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    M. Naka and M. Nozaki, hep-th/0001037.Google Scholar
  5. 5.
    I. Bruner and V. Schomerus, hep-th/0001132.Google Scholar
  6. 6.
    A. Recknagel, J. High Energy Phys. 04, 041 (2003); hep-th/0208119.MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    I. Brunner, M. R. Douglas, A. Lawrence, and C. Romelsberger, hep-th/9906200.Google Scholar
  8. 8.
    S. Govindarajan and T. Jayaraman, hep-th/0003242; S. Govindarajan, T. Jayaraman, and T. Sarkar, hep-th/9907131.Google Scholar
  9. 9.
    D.-E. Diaconescu and C. Romelsberger, hep-th/9910172.Google Scholar
  10. 10.
    M. R. Douglas, B. Fiol, and C. Romelsberger, hep-th/0003263.Google Scholar
  11. 11.
    D. Diaconescu and M. R. Douglas, hep-th/0006224.Google Scholar
  12. 12.
    P. Kaste, W. Lerche, C. A. Lutken, and J. Walcher, hep-th/9912147.Google Scholar
  13. 13.
    E. Scheidegger, hep-th/9912188; hep-th/0109013.Google Scholar
  14. 14.
    P. Mayr, J. High Energy Phys. 0101, 018 (2001); hep-th/0010223.MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    S. Govindarajan and T. Jayaraman, Nucl. Phys. B 600, 457 (2001); hep-th/0010196.MATHMathSciNetCrossRefADSGoogle Scholar
  16. 16.
    A. Tomasiello, hep-th/0010217.Google Scholar
  17. 17.
    M. R. Douglas and B. Fiol, hep-th/9903031.Google Scholar
  18. 18.
    S. E. Parkhomenko, Nucl. Phys. B 731, 360 (2005); hep-th/0412296.MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    F. Malikov, V. Schechtman, and A. Vaintrob, alg-geom/9803041.Google Scholar
  20. 20.
    L. A. Borisov, math.AG/9809094.Google Scholar
  21. 21.
    V. Gorbounov and F. Malikov, math.AG/0308114.Google Scholar
  22. 22.
    S. E. Parkhomenko, Nucl. Phys. B 671, 325 (2003); hep-th/0301070.MATHMathSciNetCrossRefADSGoogle Scholar
  23. 23.
    I. Brunner and M. R. Gaberdiel, hep-th/0503207.Google Scholar
  24. 24.
    H. Enger, A. Recknagel, and D. Roggenkamp, hep-th/0508053.Google Scholar
  25. 25.
    B. L. Feigin and A. M. Semikhatov, hep-th/9810059; Teor. Mat. Fiz. 121, 244 (1999).MATHMathSciNetGoogle Scholar
  26. 26.
    N. Ohta and H. Suzuki, Nucl. Phys. B 332, 146 (1990); M. Kuwahara, N. Ohta, and H. Suzuki, Phys. Lett. B 235, 57 (1990); Nucl. Phys. B 340, 448 (1990).MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    E. Witten, Int. J. Mod. Phys. A 9, 4783 (1994).MATHMathSciNetCrossRefADSGoogle Scholar
  28. 28.
    A. Schwimmer and N. Seiberg, Phys. Lett. B 184, 191 (1987).MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    B. L. Feigin, A. M. Semikhatov, V. A. Sirota, and I. Yu. Tipunin, Nucl. Phys. B 536, 617 (1999); hep-th/9805179.MATHMathSciNetCrossRefADSGoogle Scholar
  30. 30.
    A. N. Schellekens and S. Yankielowicz, Nucl. Phys. B 327, 673 (1989); Int. J. Mod. Phys. A 5, 2903 (1990).MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    J. Fuchs, C. Schweigert, and J. Walcher, Nucl. Phys. B 588, 110 (2000); hep-th/0003298.MATHMathSciNetCrossRefADSGoogle Scholar
  32. 32.
    J. Fuchs, A. N. Schellekens, and C. Schweigert, Nucl. Phys. B 473, 323 (1996).MATHMathSciNetCrossRefADSGoogle Scholar
  33. 33.
    H. Ooguri, Y. Oz, and Z. Yin, Nucl. Phys. B 477, 407 (1996).MATHMathSciNetCrossRefADSGoogle Scholar
  34. 34.
    N. Ishibashi, Mod. Phys. Lett. A 4, 251 (1989).MathSciNetCrossRefADSGoogle Scholar
  35. 35.
    C. G. Callan, C. Lovelace, C. R. Nappi, and S. A. Yost, Nucl. Phys. B 293, 83 (1987).MathSciNetCrossRefADSGoogle Scholar
  36. 36.
    J. Polchinski and Y. Cai, Nucl. Phys. B 296, 91 (1988).MathSciNetCrossRefADSGoogle Scholar
  37. 37.
    A. Sen, J. High Energy Phys. 9808, 012 (1998); hep-th/9805170.CrossRefADSGoogle Scholar
  38. 38.
    S. Gelfand and Yu. Manin, Methods of Homological Algebra (Nauka, Moscow, 1988; Springer, Berlin, 1996); R. P. Thomas, math.AG/000104.MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • S. E. Parkhomenko
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations