Two-dimensional S-N-S junction with Rashba spin-orbit coupling

  • O. V. Dimitrova
  • M. V. Feigel’man
Electronic Properties of Solids


The effect of Rashba spin-orbit coupling on the supercurrent in S-2DEG-S proximity junctions is investigated in the clean limit. A generalization of Beenakker’s formula for Andreev levels to the case of spin-orbit scattering is presented. Spin-orbit induced splitting of Andreev bound states is predicted for an infinite-width junction with nonvanishing normal backscattering at S-N interfaces. However, a semiclassical average of the Josephson current is insensitive to the Rashba coupling as long as the electron-electron interaction in 2DEG is neglected.

PACS numbers

74.50.+r 74.25.Sv 71.70.Ej 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. J. van Wees et al., Physica B (Amsterdam) 203, 285 (1994)ADSGoogle Scholar
  2. 2.
    H. Takayanagi, J. B. Hansen, and J. Nitta, Physica B (Amsterdam) 203, 291 (1994).ADSGoogle Scholar
  3. 3.
    F. Giazotto et al., J. Supercond. 17, 317 (2004); condmat/0207337.CrossRefGoogle Scholar
  4. 4.
    A. Chrestin, T. Matsuyama, and U. Merkt, Phys. Rev. B 55, 8457 (1997).CrossRefADSGoogle Scholar
  5. 5.
    Th. Schäpers et al., Phys. Rev. B 67, 014522 (2003).Google Scholar
  6. 6.
    M. Ebel et al., cond-mat/0407206.Google Scholar
  7. 7.
    A. Brinkman and A. A. Golubov, Phys. Rev. B 61, 11297 (2000).CrossRefADSGoogle Scholar
  8. 8.
    A. Chrestin, T. Matsuyama, and U. Merkt, Phys. Rev. B 49, 498 (1994).CrossRefADSGoogle Scholar
  9. 9.
    E. I. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960) [Sov. Phys. Solid State 2, 1109 (1960)].Google Scholar
  10. 10.
    J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett. 78, 1335 (1997).CrossRefADSGoogle Scholar
  11. 11.
    Y. Meir, Y. Gefen, and O. Entin-Wohlman, Phys. Rev. Lett. 63, 798 (1989).CrossRefADSGoogle Scholar
  12. 12.
    E. Bezuglyi et al., Phys. Rev. B 66, 052508 (2002).Google Scholar
  13. 13.
    I. V. Krive et al., Fiz. Nizk. Temp. 30, 535 (2004) [Low Temp. Phys. 30, 398 (2004)].Google Scholar
  14. 14.
    N. M. Chtchelkatchev and Yu. V. Nazarov, Phys. Rev. Lett. 90, 226806 (2003).Google Scholar
  15. 15.
    M. Khodas, A. Shekhter, and A. M. Finkel’stein, Phys. Rev. Lett. 92, 086602 (2004).Google Scholar
  16. 16.
    C. W. J. Beenakker, Phys. Rev. Lett. 67, 3836 (1991).CrossRefADSGoogle Scholar
  17. 17.
    P. A. Mello and J.-L. Pichard, J. Phys. I 1, 493 (1991).CrossRefGoogle Scholar
  18. 18.
    J. A. Melsen and C. W. J. Beenakker, Physica B (Amsterdam) 203, 219 (1994).ADSGoogle Scholar
  19. 19.
    N. I. Lundin et al., Superlatt. Microstruct. 20(1) (1996).Google Scholar
  20. 20.
    The idea of this calculation was communicated to us by N. M. ChtchelkatchevGoogle Scholar
  21. 21.
    N. M. Chtchelkatchev, PhD Thesis (Landau Inst. for Theoretical Physics, Moscow, 2002),
  22. 22.
    T. Koga, Y. Sekine, and J. Nitta, cond-mat/0504743; M. König, A. Tscheschetkin, E. M. Hankiewicz, et al., cond-mat/0508396.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • O. V. Dimitrova
    • 1
  • M. V. Feigel’man
    • 1
  1. 1.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations