Skip to main content
Log in

KTm[B4O6(OH)4] ⋅ 3H2O: A New Member of Borate Family with Mica-like Tetrahedral Layers

  • STRUCTURE OF INORGANIC COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Crystals of new borate KTm[B4O6(OH)4] ⋅ 3H2O (sp. gr. Р\(\bar {3}\)1m, a = 4.5472(7) Å, c = 12.151(3) Å) have been obtained under hydrothermal conditions at T = 280°C and P = 100 atm. Their structure contains packets of two polar mica-like tetrahedral layers [B4O6(OH)4]∞∞, connected by TmO6 octahedra. The interpacket space is occupied statistically by K atoms and water molecules. A similar layer is typical of peprossiite and its synthetic analogue NdAl2.07[B4O10]O0.6 and KTa[B4O6(OH)4](OH)2 ⋅ 1.33H2O, which have another sp. gr. P\(\bar {6}\)2m and trigonal-prismatic coordination of heavy atoms. The structure of the new compound is compared with two other structures of this family: KGd[B6O10(OH)2] and KHo[B6O10(OH)2]. A previously unknown combination of simple mica-like layers and octahedra in one packet is implemented in the new member of the family. All compounds under consideration are characterized by disorder and statistical occupancy of sites, especially in the interpacket space. The KTm[B4O6(OH)4] ⋅ 3H2O crystals demonstrate strong emission of blue light due to the radiative 4f–4f  transitions of the Tm3+ cation. The most intense transition in the photoluminescence spectrum is 1D23F4 at 450 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. The Cambridge Crystallographic Data Centre (CCDC). Inorganic Crystal Structure Data Base (ICSD). http://www.ccdc.cam.ac.uk/; http://www.fiz-karlsruhe.de.

  2. Crystallography Open Database. http://www.crystallography.net/cod.

  3. C. L. Christ and J. R. Clark, Phys. Chem. Miner. 2, 59 (1977).

    Article  ADS  Google Scholar 

  4. R. E. Newnham, M. J. Redman, and R. P. Santoro, J. Am. Ceram. Soc. 46, 253 (1963).

    Article  Google Scholar 

  5. Y. Liu, F. Yu, Zh. Wang, et al., Cryst. Eng. Commun. 16, 7141 (2014).

    Article  Google Scholar 

  6. A. B. Ilyukhin and B. F. Dzhurinskii, Zh. Neorg. Khim. 38, 1625 (1993).

    Google Scholar 

  7. E. L. Belokoneva, A. P. Zorina, and O. V. Dimitrova, Crystallogr. Rep. 58 (2), 210 (2013).

    Article  ADS  Google Scholar 

  8. M. H. Moeller, T. Schleid, H. Emme, et al., Z. Natur. B 59, 202 (2004).

    Article  Google Scholar 

  9. H. Emme, M. Valldor, R. Pöttgen, and H. Huppertz, Chem. Mater. 17, 2707 (2005).

    Article  Google Scholar 

  10. F. Liebau, Structural Chemistry of Silicates: Structure, Bonding and Classification (Springer, New York, 1985; Mir, Moscow, 1988).

  11. X. Qiao, Y. Cheng, L. Qin, et al., J. Alloys Compd. 617, 946 (2015).

    Article  Google Scholar 

  12. P. Du and J. S. Yu, Mater. Res. Bull. 84, 303 (2016).

    Article  Google Scholar 

  13. I. V. Nikiforov, D. V. Deyneko, D. A. Spassky, et al., Mater. Res. Bull. 130, 110925 (2020).

    Article  Google Scholar 

  14. Z. Xue, Z. Yi, X. Li, et al., Biomaterials 115, 90 (2017).

    Article  Google Scholar 

  15. H. Zhang, Y. Li, Y. Lin, et al., Nanoscale 3, 963 (2011).

    Article  ADS  Google Scholar 

  16. W. T. Carnall, P. R. Fields, and K. Rajak, J. Chem. Phys. 49, 4424 (1968). https://doi.org/10.1063/1.1669893

    Article  ADS  Google Scholar 

  17. A. Tymiński and T. Grzyb, J. Lumin. 181, 411 (2017).

    Article  Google Scholar 

  18. J. B. Gruber and J. G. Conway, J. Chem. Phys. 32 (4), 1178 (1960).

    Article  ADS  Google Scholar 

  19. A. Nadort, J. Zhao, and E. M. Goldys, Nanoscale 8, 13099 (2016).

    Article  ADS  Google Scholar 

  20. Transition Metal and Rare Earth Compounds: Excited States, Transitions, Interactions, Vol. I, Ed. by H. Yersin (Springer, New York, 2001).

    Google Scholar 

  21. M. Runowski, A. Shyichuk, A. Tymiński, et al., ACS Appl. Mater. Interfaces 10 (20), 17269 (2018).

    Article  Google Scholar 

  22. S. Yu. Stefanovich, Extended Abstracts of Eur. Conf. on Lasers and ElecrtoOptics (CLEO Europe’94), Amsterdam, 1994, p. 249.

  23. E. L. Belokoneva, S. Yu. Stefanovich, and O. V. Dimitrova, J. Solid State Chem. 195, 79 (2002).

    Article  ADS  Google Scholar 

  24. E. L. Belokoneva, A. P. Topnikova, S. Yu. Stefanovich, et al., Solid State Sci. 46, 43 (2015).

    Article  ADS  Google Scholar 

  25. Agilent, CrysAlis PRO (Agilent Technologies Ltd, Yarnton, Oxfordshire, England, 2014).

  26. G. M. Sheldrick, Acta Crystallogr. A 64, 112 (2008).

    Article  ADS  Google Scholar 

  27. L. J. Farrugia, J. Appl. Crystallogr. 45, 849 (2012).

    Article  Google Scholar 

  28. G. M. Sheldrick, Acta Crystallogr. C 71, 3 (2015).

    Article  Google Scholar 

  29. E. Dowty, ATOMS. Shape Software (Kingsport, Tennessee, USA, 2006).

    Google Scholar 

  30. G. Dominiak-Dzik, W. Ryba-Romanowski, S. Goł, and A. Pajaczkowska, J. Phys.: Condens. Matter 12, 5495 (2000).

    ADS  Google Scholar 

  31. A. N. Meza-Rocha, A. Speghini, R. Lozada-Morales, and U. Caldiño, Opt. Mater. 58, 183 (2016).

    Article  ADS  Google Scholar 

  32. M. Que, Zh. Ci, Yu. Wang, et al., J. Lumin. 144, 64 (2013).

    Article  Google Scholar 

  33. D. Yu. Pushcharovskii, O. G. Karpov, N. I. Leonyuk, and N. V. Belov, Dokl. Akad. Nauk SSSR, 241, 91 (1978).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S.Yu. Stefanovich for the SHG measurements and consultations and to V.O. Yapaskurt for the determination of the crystal composition.

Funding

This study was performed in part within a state contract for the Institute of Solid State Physics of the Russian Academy of Sciences. The analysis of the luminescence properties was supported by the Russian Science Foundation (grant no. 19-77-10013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Zorina.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topnikova, A.P., Belokoneva, E.L., Dimitrova, O.V. et al. KTm[B4O6(OH)4] ⋅ 3H2O: A New Member of Borate Family with Mica-like Tetrahedral Layers. Crystallogr. Rep. 66, 105–111 (2021). https://doi.org/10.1134/S1063774521010193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521010193

Navigation