Crystallography Reports

, Volume 63, Issue 7, pp 1120–1123 | Cite as

Synthesis and Structural Characterization of a Nickel Coordination Polymer Based on 4-(1H-Imidazol-1-yl)phenyl)methanone with Phthalic Acid

  • Shu-Wen SunEmail author
  • Gao-Feng Wang
  • Xiao Zhang


A nickel coordination polymer with V-shaped ligands, {[(L1)2Ni(H2O)2] · 2(C8H5O4)}n, (L1 = 4-(1H-imidazol-1-yl)phenyl)methanone) has been synthesized under the solvothermal conditions. The structure has been determined by the single-crystal X-ray diffraction analysis and characterized by the infrared spectroscopy and elemental analysis. The crystal is crystallized in the monoclinic sp. gr. P21/c with the unit cell parameters a = 15.6387(3) Å, b = 8.0526(2) Å, c = 24.4791(6) Å, and β = 129.2350(10)°, Z = 2. The adjacent [Ni(H2O)2] units are linked by two bridging L1 ligands to form 1D looped chains, which are extended by the hydrogen bonds to yield a 3D framework.



This work was financially supported by the Young Teacher Starting-up Research of Yuncheng University (YQ-2015007), Undergraduate Training Program for Innovation and Entrepreneurship of Yuncheng University (DC2017170), and Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education.


  1. 1.
    Y. Liu, W. Xuan, and Y. Cui, Adv. Mater. 22, 4112 (2010).CrossRefGoogle Scholar
  2. 2.
    W. Xuan, C. Zhu, Y. Liu, et al., Chem. Soc. Rev. 41, 1677 (2012).CrossRefGoogle Scholar
  3. 3.
    S. L. James, Chem. Soc. Rev. 32, 276 (2003).CrossRefGoogle Scholar
  4. 4.
    Y. Wei, Y. Yu, and K. Wu, Cryst. Growth Des. 8, 2087 (2008).CrossRefGoogle Scholar
  5. 5.
    F. Luo, Y. X. Che, and J. M. Zheng, Cryst. Growth Des. 9, 1066 (2008).CrossRefGoogle Scholar
  6. 6.
    S. Goldstein, G. Czapski, H. Cohen, et al., Inorg. Chem. 31, 798 (1992).CrossRefGoogle Scholar
  7. 7.
    S.-H. Zhang, N. Li, C. M. Ge, et al., Dalton Trans. 40, 3000 (2011).CrossRefGoogle Scholar
  8. 8.
    L. Yang, S.-H. Zhang, W. Wang, et al., Polyhedron 74, 49 (2014).CrossRefGoogle Scholar
  9. 9.
    W.-G. Lu, D.-C. Zhong, L. Jiang, et al., Cryst. Growth Des. 12, 3675 (2012).CrossRefGoogle Scholar
  10. 10.
    G.-F. Wang, X. Zhang, S.-W. Sun, et al., Z. Naturforsch. 71b, 869 (2016).CrossRefGoogle Scholar
  11. 11.
    G.-F. Wang, X. Zhang, Z.-R. Liu, et al., Z. Naturforsch. 72b, 83 (2017).CrossRefGoogle Scholar
  12. 12.
    G.-F. Wang, X. Zhang, S.-W. Sun, et al., Z. Naturforsch. 72b, 257 (2017).CrossRefGoogle Scholar
  13. 13.
    Agilent Technologies XCalibur, C. C. D. System, CrysAlisPro, Version 1.171. 35.19 (Agilent Technologies Inc., Santa Clara, CA, 2011).Google Scholar
  14. 14.
    G. M. Sheldrick, Program for Multi-Scan Absorption Correction (University of Göttingen, Göttingen, 2000).Google Scholar
  15. 15.
    P. T. Beurskens, G. Admiraal, and G. Beurskens, The DIRDIF Program System, Technical Report of the Crystallography Laboratory (University of Nijmegen, Nijmegen, 1992).Google Scholar
  16. 16.
    G. M. Sheldrick, Program for Crystal Structure Solution and Refinement (University of Göttingen, Göttingen, 2000).Google Scholar
  17. 17.
    D. Cheng, M. A. Khan, and R. P. Houser, Inorg. Chim. Acta. 351, 242 (2003).CrossRefGoogle Scholar
  18. 18.
    Y. Wang, Y. Qi, Q. Li, et al., Polyhedron 85, 389 (2015).CrossRefGoogle Scholar
  19. 19.
    J. Hao, Y. Zhao, B. Yu, et al., Transition Met. Chem. 39, 741 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Yuncheng UniversityYunchengChina
  2. 2.MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of TechnologyHarbinChina

Personalised recommendations