Crystallography Reports

, Volume 63, Issue 7, pp 1082–1087 | Cite as

Structure and Properties of Syntetic Layered Lithium-Containing Silicates

  • N. A. Palchik
  • T. N. Moroz
  • L. V. Miroshnichenko


A crystallochemical analysis of synthetic layered lithium-containing silicates has been performed. It is shown that these compounds have unique properties and structural characteristics. According to the X-ray diffraction data, the initial material possess a layered structure. After filling the material with ethylene glycol, the intensity of the reflection corresponding to the interplanar spacing d001 = 12.3 Å significantly decreased, and two additional peaks arose: strong (d = 16.8 Å) and weak (d = 14.7 Å), which indicates possible presence of three layered phases with different sorption properties in the sample. The samples easily absorb moisture from air. The range of stretching vibrations of OH groups in the IR spectra of synthesized samples corresponds to the spectrum of adsorbed water.



We are grateful to T.N. Grigor’eva for supplying samples and giving valuable consultations during their study, D.P. Pishchur (Institute of Inorganic Chemistry, SB RAS) for carrying out the DSC analysis, and N.V. Abrosimova for determining the lithium content in the samples.

Instrumental investigations were performed at the Analytical Center for Multielement and Isotope Studies (SB RAS).

This study was performed within a government contract (project no. 0330-2016-0017) and supported by the Federal Agency for Scientific Organizations.


  1. 1.
    J. Bujdak, H. Slosiarikova, L. Novakova, and B. Cicel, Chem. Papers 45 (4), 499 (1991).Google Scholar
  2. 2.
    N. A. Volovicheva, Extended Abstract of Cand. Sci. Dissertation in Technical Sciences (Belgorod State Univ., Belgorod, 2009).Google Scholar
  3. 3.
    A. Kuligiewocz, A. Derkowski, K. Emmerich, et al., Clays Clay Miner. 63 (6), 443 (2015).CrossRefGoogle Scholar
  4. 4.
    J. M. Trillo, N. D. Alba, R. Alvero, and M. A. Castro, J. Chem. Soc. Chem. Commun. 24, 1809 (1993).CrossRefGoogle Scholar
  5. 5.
    J. Madejova, J. Bujdak, W. P. Gates, and P. Komadel, Clay Miner. 31 (2), 233 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    G. B. Bokii, Systematics of Natural Silicates. Advances in Science and Technology (Kosmosinform, Moscow, 1997) [in Russian].Google Scholar
  7. 7.
    A. P. Zhukhlistov, B. B. Zvyagin, and T. N. Shuriga, Mineral. Zh. 5 (2), 92 (1983).Google Scholar
  8. 8.
    J. M. Trillo, J. Poyato, M. M. Tobías, and M. A. Castro, Clay Miner. 25 (4), 485 (1990).ADSCrossRefGoogle Scholar
  9. 9.
    J. Madejova, B. Arvaijva, and P. Komadel, Spectrochim. Acta A 55 (12), 2467 (1999).ADSCrossRefGoogle Scholar
  10. 10.
    V. A. Drits and A. G. Kossovskaya, Argillaceous Minerals: Smectites and Interstratified Formations (Nauka, Moscow, 1990) [in Russian].Google Scholar
  11. 11.
    A. A. Bobr-Sergeev, Extended Abstract of Cand. Sci. Dissertation in Geology and Mineralogy (Moscow State University, Moscow, 1967).Google Scholar
  12. 12.
    A. V. Belyaev, S. G. Kozlova, D. P. Pishchur, et al., Russ. J. Inorg. Chem. 61 (3), 291 (2016).CrossRefGoogle Scholar
  13. 13.
    A. Viani, A. F. Gualtieri, and G. Artioli, Am. Mineral. 87, 966 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    N. A. Palchik, T. N. Grigoieva, and T. N. Moroz, Crystallogr. Rep. 58 (2), 302 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    N. A. Palchik, T. N. Moroz, T. N. Grigorieva, et al., Crystallogr. Rep. 62 (1), 86 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    M. F. Brigatti, D. T. Kile, and M. Poppi, Can. Mineral. 39, 1171 (2001).CrossRefGoogle Scholar
  17. 17.
    M. F. Brigatti, A. Mottana, D. Malferrari, and G. Cibin, Am. Mineral. 92, 1395 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    N. A. Palchik, T. N. Grigoieva, and T. N. Moroz, J. Struct. Chem. 50, S110 (2009).CrossRefGoogle Scholar
  19. 19.
    T. N. Moroz, N. A. Palchik, T. N. Grigorieva, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 5 (6), 1073 (2011).CrossRefGoogle Scholar
  20. 20.
    N. A. Pal’chik, T. N. Moroz, T. N. Grigor’eva, and A. N. Derkachev, Proc. Int. Mineralogical Seminar “Crystalline and Solid Noncrystalline State of Mineral Substance (Mineralogical Crystallography 2012),” Syktyvkar, June 4–7, 2012, p. 164.Google Scholar
  21. 21.
    A. G. Bullakh, Guidance and Tables for Calculating Formulas of Minerals (Nedra, Moscow, 1967) [in Russian].Google Scholar
  22. 22.
    L. N. Pokhilenko, T. A. Alifirova, and D. S. Yudin, Dokl. Akad. Nauk 449 (1), 76 (2013).Google Scholar
  23. 23.
    D. S. Yudin, T. N. Moroz, S. A. Novikova, et al., Abstr. XII Int. Conf. “GeoRaman-2016,” Novosibirsk, June 9–15, 2016, p. 141.Google Scholar
  24. 24.
    J. Madejova, J. Bujdak, W. P. Gates, and P. Komadel, Clay Miner. 31, 233 (1996).ADSCrossRefGoogle Scholar
  25. 25.
    Spoito, Prost, and J. P. Gaultier, Clays Clay Miner. 31, 9 (1983).ADSCrossRefGoogle Scholar
  26. 26.
    M. V. Slonimskaya, G. Besson, L. G. Dainyak, et al., Clay Miner. 21, 377 (1986).ADSCrossRefGoogle Scholar
  27. 27.
    V. I. Ivanova, B. K. Kasatov, T. N. Krasavina, and E. L. Rozinova, Thermal Analysis of Minerals and Rocks (Nedra, Moscow, 1974) [in Russian], p. 168.Google Scholar
  28. 28.
    K. Emmerich, F. Wolters, G. Kahr, and G. Lagaly, Clays Clay Miner. 57, 104 (2009).ADSCrossRefGoogle Scholar
  29. 29.
    N. A. Palchic, T. N. Grigoreva, T. N. Moroz, and P. A. Solotchin, Abstr. III Int. Conf. “Crystallogenesis and Mineralogy,” Novosibirsk, September 27–October 1, 2013, p. 41.Google Scholar
  30. 30.
    V. P. Afanas’ev, E. I. Nikolenko, N. A. Pal’chik, et al., Proc. Mineralogical Seminar “Modern Problems of Theoretical, Experimental, and Applied Mineralogy (Readings in Memory of Yushkin–2014),” Syktyvkar, 19–22 May, 2014, p. 38.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • N. A. Palchik
    • 1
  • T. N. Moroz
    • 1
  • L. V. Miroshnichenko
    • 1
  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations