Crystallography Reports

, Volume 63, Issue 7, pp 1138–1142 | Cite as

Synthesis and Structural Characterization of the Schiff Base Zn(II) Complex from Salicylaldehyde and Tris(2-aminoethyl)amine

  • R. Ranjineh KhojastehEmail author
  • S. Jalali Matin


The pentadentate N4O-type Schiff base ligand was obtained by the condensation reaction of salicylaldehyde and tris(2-aminoethyl)amine, and its novel Zn(II) complex [Zn2 (C13H21N4O)]Cl3 was synthesized. The compounds were characterized by IR, UV–Vis, 1H-, 13C-NMR spectroscopy. Crystal structure of the complex was determined by X-ray single crystal diffraction. Complex crystallizes in the monoclinic system with sp. gr. P21/c and shows the ligand coordinated to two Zn ions with different structures around metal ions. One Zn(II) ion is five-coordinated: its coordination polyhedron is intermediate between trigonal bipyramid and square pyramid, being 30.1% along the pathway from trigonal bipyramid to square pyramid. Another Zn(II) ion has a tetrahedral structure. The electronic spectrum of the complex showed ligand to metal charge-transfer bands.


  1. 1.
    S. J. Matin and R. R. Khojasteh, Russ. J. Gen. Chem. 85, 1763 (2015).CrossRefGoogle Scholar
  2. 2.
    R. R. Khojasteh and S. J. Matin, Russ. J. Appl. Chem. 88, 921 (2015).CrossRefGoogle Scholar
  3. 3.
    N. Sari, P. Gürkan, and S. Arslan, Trans. Metal. Chem. 28, 468 (2003).CrossRefGoogle Scholar
  4. 4.
    Y. N. Belokon, A. G. Bulychev, V. I. Maleev, et al., Mendeleev. Commun. 14, 249 (2004).CrossRefGoogle Scholar
  5. 5.
    R. Ranjineh Khojasteh and S. Jalali Matin, Rev. Roum. Chim. 61, 83 (2016).Google Scholar
  6. 6.
    S. Chandra and M. Pundir, Spectrochim. Acta, Part A 69, 1 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    K. Ishara Silva and S. Saxena, J. Phys. Chem. B 117, 9386 (2013).CrossRefGoogle Scholar
  8. 8.
    D. K. Blencowe and A. P. Morby, FEMS Microbiol Rev. 27, 291 (2003).CrossRefGoogle Scholar
  9. 9.
    A. D. Finke, D. L. Gray, and J. S. Moorec, Acta Crystallogr. E Crystallogr. Commun. 72, 35 (2016).CrossRefGoogle Scholar
  10. 10.
    H. Keypour, H. Khanmohammadi, K. Wainwright, and M. Taylor, Inorg. Chim. Acta 355, 286 (2003).CrossRefGoogle Scholar
  11. 11.
    H. Khanmohammadi, S. Amani, H. Lang, and T. Rueffer, Inorg. Chim. Acta 360, 579 (2007).CrossRefGoogle Scholar
  12. 12.
    T. Koike and E. Kimura, J. Am. Chem. Soc. 113, 8935 (1991).CrossRefGoogle Scholar
  13. 13.
    Q.-X. Xianga, J. Zhanga, P.-Y. Liua, et al., J. Inorg. Biochem. 99, 1661 (2005).CrossRefGoogle Scholar
  14. 14.
    P. D. Knight, A. J. P. White, and C. K. Williams, Inorg. Chem. 47, 11711 (2008).CrossRefGoogle Scholar
  15. 15.
    X.-X. Sun, C.-M. Qi, S.-L. Ma, et al., Inorg. Chem. Commun. 9, 911 (2006).CrossRefGoogle Scholar
  16. 16.
    R. Pedrido, M. R. Bermejo, A. M. Garcia-Deibe, et al., Eur. J. Inorg. Chem. 2003, 3193 (2003).CrossRefGoogle Scholar
  17. 17.
    Y. Xie, Q. Liu, X. Xu, et al., Synth. React. Inorg. Met. Org. Chem. 31, 195 (2001).CrossRefGoogle Scholar
  18. 18.
    S. J. Brudenell, L. Spiccia, D. C. R. Hockless, et al., J. Chem. Soc., Dalton Trans. 9, 1475 (1999).CrossRefGoogle Scholar
  19. 19.
    Mar 345 dtb, Automar Software Package: Program for the Acquisition and Analysis of Data. Version 1.24-4 (Marresearch, GmbH, Germany, 2013).Google Scholar
  20. 20.
    G. M. Sheldrick, Acta Crystallogr. A 64, 112 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, and G. C. Verschoor, J. Chem. Soc. Dalton Trans. 7, 1349 (1984).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Department of Inorganic Chemistry, Faculty of Chemistry, Tehran North Branch, Islamic Azad UniversityTehranIran

Personalised recommendations