Advertisement

Crystallography Reports

, Volume 63, Issue 7, pp 1147–1152 | Cite as

Neutron Diffraction Study of the Phase Transformations in Titanium Carbohydride TiC0.50Hy

  • I. KhidirovEmail author
  • S. J. Rakhmanov
LATTICE DYNAMICS AND PHASE TRANSITIONS
  • 5 Downloads

Abstract

It is shown that the ordered phase of titanium carbohydride TiC0.50H0.31 with a face-centered cubic lattice (sp. gr. Fd\(\bar {3}\)m), obtained by self-propagating high-temperature synthesis, has an ordered antiphase domain structure with a period P = 16. This period is much larger than that in TiC0.50Hy (y ≤ 0.22), with a lower hydrogen content (P ≈ 11). It is shown that TiC0.50H0.31 decomposes at temperatures T ≤ 900°C into the cubic phase of titanium carbide TiCx (x ≥ 0.70) (sp. gr. Fm\(\bar {3}\)m) and the trigonal phase of titanium carbohydride Ti2CvHz (sp. gr. P\(\bar {3}\)m1).

Notes

ACKNOWLEDGMENTS

We are grateful to the employees of the Laboratory of Chemistry of Hydrides and Boron (which now enters the Laboratory of Energy-Consuming Materials) of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences), especially to L.N. Padurets for the chemical analysis of the carbon and hydrogen contents in the samples.

This study was performed within the Program of Fundamental Investigations of the Uzbekistan Academy of Sciences, project no. F2-FA-F119.

REFERENCES

  1. 1.
    S. S. Kiparisov, Yu. V. Levinskii, and A. P. Petrov, Titanium Carbide: Formation, Properties, and Applications (Metallurgiya, Moscow, 1987) [in Russian].Google Scholar
  2. 2.
    I. M. Bairikov, A. P. Amosov, O. V. Tyumina, et al., Vopr. Chelyustnoo Litsevoi, Plast. Khir., Implantol. Klin. Stomatol., Nos. 1–2, 23 (2011).Google Scholar
  3. 3.
    Cardio-Vascular Set with a Titanium Carbide Coating. http://www. rmed.ru/ tem./info/22030.html.Google Scholar
  4. 4.
    I. Khidirov, Crystallogr. Rep. 60 (5), 706 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    I. Khidirov and D. I. Sotvoldiev, Al’tern. Energ. Ekol., No. 3, 94 (2008).Google Scholar
  6. 6.
    A. P. Amosov, I. P. Borovinskaya, and A. G. Merzhanov, Powder Technology of Self-Propagating High-Temperature Materials Synthesis (Mashinostroenie-1, Moscow, 2007) [in Russian].Google Scholar
  7. 7.
    R. A. Yang and D. B. J. Wilas, J. Appl. Crystallogr. 15, 430 (1982).CrossRefGoogle Scholar
  8. 8.
    I. Khidirov, Russ. J. Inorg. Chem. 60 (10), 1263 (2015).CrossRefGoogle Scholar
  9. 9.
    T. S. Boyarshinova, O. D. Shashkov, and V. D. Sukhanov, Fiz. Met. Metalloved. 78 (5), 85 (1994).Google Scholar
  10. 10.
    A. I. Gusev, Phys.-Usp. 57 (9), 905 (2014).CrossRefGoogle Scholar
  11. 11.
    I. Khidirov, B. B. Mirzaev, N. N. Mukhtarova, et al., Al’tern. Energ. Ekol., No. 5, 47 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Nuclear Physics, Uzbekistan Academy of SciencesTashkentUzbekistan

Personalised recommendations