Advertisement

Crystallography Reports

, Volume 63, Issue 6, pp 989–993 | Cite as

Formation of Nanocomposites on the Surface of Silicon Carbide Crystals under Impact of Iron Fluxes

  • A. N. Beltyukov
  • F. Z. Gil’mutdinov
  • R. G. Valeev
  • I. A. El’kin
  • S. S. Starchikov
  • A. E. Muslimov
  • V. M. Kanevsky
NANOMATERIALS AND CERAMICS

Abstract

The formation of graphene–iron composite structures on the surface of cleavages of silicon carbide single crystals using vacuum thermal destruction with simultaneous deposition of iron atoms has been investigated. The effect of the iron deposition rate on the formation of single- and multilayer graphene structures is established. It is shown by X-ray photoelectron and Raman spectroscopy that iron partially dissolves in the graphene structures without formation of nanocrystallites, clusters, etc.

Notes

ACKNOWLEDGMENTS

This study was supported by the Federal Agency for Scientific Organizations (contract no. 007-ГЗ/Ч3363/26). The Raman studies were supported by the Russian Science Foundation (grant no. 14-12-00848–P). The XPS investigations of the composite structures were carried out in the framework of the state task for the Udmurt Federal Research Center, Russian Academy of Sciences, Ural Branch (state registration no. AAAA-A17-117022250040-0) using equipment of the Center of Collective Use for Surface Investigations and Physicochemical Analysis of the Udmurt Federal Research Center.

REFERENCES

  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Nature 438, 197 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    S. Rajput, M. X. Chen, Y. Liu, et al., Nat. Commun. 4, 2752 (2013).CrossRefGoogle Scholar
  3. 3.
    D. Tomer, S. Rajput, L. J. Hudy, et al., Appl. Phys. Lett. 105, 021607 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    S. Tongay, M. Lemaitre, X. Miao, et al., Phys. Rev. X 2, 011002 (2012).Google Scholar
  5. 5.
    P. Dharmaraj, K. Jeganathan, S. Parthiban, et al., Appl. Phys. Lett. 105, 181601 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    P. Dharmaraj, P. J. Jesuraj, and K. Jeganathan, Appl. Phys. Lett. 108, 051605 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    S. Shivaraman, L. H. Herman, F. Rana, et al., Appl. Phys. Lett. 100, 183112 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    S. Hertel, D. Waldmann, J. Jobst, et al., Nat. Commun. 3, 957 (2013).CrossRefGoogle Scholar
  9. 9.
    X. Z. Yu, C. G. Hwang, C. M. Jozwiak, et al., J. Electron Spectrosc. Relat. Phenom. 184, 100 (2011).CrossRefGoogle Scholar
  10. 10.
    N. Camara, B. Jouault, B. Jabakhanji, et al., Nanoscale Res. Lett. 6, 141 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    A. N. Andreev, A. S. Tregubova, M. P. Shcheglov, et al., Fiz. Tekh. Poluprovodn. 29 (10), 1828 (1995).Google Scholar
  12. 12.
    S. Cooil, F. Song, G. Williams, et al., Carbon 50 (14), 5099 (2012).CrossRefGoogle Scholar
  13. 13.
    N. Fairley, Casa Sofware (USA, 2010), p. 176.Google Scholar
  14. 14.
    V. I. Nefedov, X-Ray Photoelectron Spectroscopy of Chemical Compounds (Khimiya, Moscow, 1984) [in Russian], p. 159.Google Scholar
  15. 15.
    R. Saito, M. Hofmann, G. Dresselhaus, et al., Adv. Phys. 30, 413 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    T. S. Kartapova, O. R. Bakieva, V. L. Vorob’ev, et al., Phys. Solid State 59 (3), 613 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    A. V. Krest’yanin, Ross. Nanotechnol. 4 (1–2), 115 (2009).Google Scholar
  18. 18.
    A. Furlan, U. Jansson, J. Lu, et al., J. Phys.: Condens. Matter 27, 045002 (2015).ADSGoogle Scholar
  19. 19.
    I. N. Shabanova and V. A. Trapeznikov, J. Electron Spectrosc. Relat. Phenom. 6, 297 (1975).CrossRefGoogle Scholar
  20. 20.
    A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, and N. S. McIntyre, Surf. Interface Anal. 36, 1564 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. N. Beltyukov
    • 1
  • F. Z. Gil’mutdinov
    • 1
  • R. G. Valeev
    • 1
  • I. A. El’kin
    • 1
  • S. S. Starchikov
    • 2
  • A. E. Muslimov
    • 2
  • V. M. Kanevsky
    • 2
  1. 1.Udmurt Federal Research Center, Russian Academy of Sciences, Ural BranchIzhevskRussia
  2. 2.Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallography and Photonics,” Russian Academy of SciencesMoscowRussia

Personalised recommendations