Advertisement

Crystallography Reports

, Volume 63, Issue 6, pp 891–896 | Cite as

New Data on the Isomorphism in Eudialyte-Group Minerals. II. Refinement of the Aqualite Crystal Structure at 110 K

  • R. K. Rastsvetaeva
  • K. A. Viktorova
  • S. M. Aksenov
STRUCTURE OF INORGANIC COMPOUNDS

Abstract

The crystal structure of aqualite from the Khibiny massif, a high-oxonium eudialyte-group mineral, has been refined by X-ray diffraction analysis using a set of low-temperature (110 K) experimental data. The trigonal-cell parameters are found to be a = 14.1435(4) Å, c = 31.410(1) Å, V = 5441.4(4) Å3, sp. gr. R3m. The structure is refined to the final reliability factor R = 0.046 in the anisotropic approximation of atomic displacements using 1173F > 3σ(F). The idealized formula of the mineral (Z = 3) is (H3O)9Na3 (K,Sr,Ba,Ce)2Ca6Zr3Fe3+[Si24O72](OH,Cl,H2O)5. Low-temperature refinement explained the low symmetry of aqualite from the Inaglinskii massif and revealed some new structural features of the mineral. Oxonium occupies mainly the N1–N4 sites, partially the N5 void, and the N6 site. A unique feature of aqualite (and its Mn analog, ilyukhinite), which was not previously observed in eudialytes and is considered for the first time in this study, is the presence of inversely oriented complex anion, which significantly affects the N4 site occupancy.

Notes

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project no. 16-05-00739_a), in the part of structural studies and the Federal Agency for Scientific Organizations (contract no. 007-ГЗ/Ч3363/26) in the part of crystallochemical analysis.

REFERENCES

  1. 1.
    N. V. Chukanov, I. V. Pekov, and R. K. Rastsvetaeva, Usp. Khim. 73 (3), 227 (2004).CrossRefGoogle Scholar
  2. 2.
    K. A. Rozenberg, R. K. Rastsvetaeva, and A. P. Khomyakov, Eur. J. Mineral. 17, 875 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    R. K. Rastsvetaeva and A. P. Khomyakov, Crystallogr. Rep. 47 (2), 232 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    A. P. Khomyakov, G. N. Nechelyustov, and R. K. Rastsvetaeva, Zap. Ross. Mineral. O-va, No. 2, 39 (2007).Google Scholar
  5. 5.
    R. K. Rastsvetaeva and N. V. Chukanov, Crystallogr. Rep. 48 (5), 717 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    R. K. Rastsvetaeva, K. A. Rozenberg, N. V. Chukanov, and S. M. Aksenov, Crystallogr. Rep. 62 (1), 60 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    H. J. Spratt, M. Avdeev, M. C. Pfrunder, et al., Phys. Chem. Miner. 41, 505 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    J. Najorka, J. M. T. Lewis, J. Spratt, and M. A. Sephton, Phys. Chem. Miner. 43, 377 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    V. I. Andrianov, Kristallografiya 32 (1), 228 (1987).Google Scholar
  10. 10.
    R. K. Rastsvetaeva, N. V. Chukanov, and S. M. Aksenov, Eudialyte-Group Minerals: Crystal Chemistry, Properties, and Genesis (Izd-vo NGU, Nizhny Novgorod, 2012) [in Russian].Google Scholar
  11. 11.
    R. K. Rastsvetaeva, A. G. Ivanova, and A. P. Khomyakov, Dokl. Akad. Nauk 410 (1), 101 (2006).Google Scholar
  12. 12.
    R. K. Rastsvetaeva, S. M. Aksenov, and N. V. Chukanov, Dokl. Akad. Nauk 432 (5), 639 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • R. K. Rastsvetaeva
    • 1
  • K. A. Viktorova
    • 1
  • S. M. Aksenov
    • 1
  1. 1.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of SciencesMoscowRussia

Personalised recommendations