Advertisement

Crystallography Reports

, Volume 63, Issue 6, pp 983–988 | Cite as

Influence of Dye Molecules on the Polarization of Ferroelectric Vinylidene Fluoride Copolymer

  • V. V. Kochervinskii
  • N. V. Kozlova
  • N. A. Shmakova
  • A. V. Kalabukhova
  • D. A. Kiselev
  • M. D. Malinkovich
  • M. A. Gradova
  • O. V. Gradov
  • S. A. Bedin
SURFACE AND THIN FILMS
  • 9 Downloads

Abstract

Electrical, electromechanical, and structural–optical properties of films of vinylidene fluoride copolymer with tetrafluoroethylene TFE, doped with Rhodamine 6G dye, have been investigated. It is found that the conductivity increases in doped films; at the same time, it “anomalously” decreases with an increase in the field. The hysteresis loop of local piezoelectric response has an asymmetric shape, which is related to the difference in the local field when its polarity changes. According to the data of absorption and luminescence spectra, the dye (at chosen concentrations) exists in form of, at least, monomers and dimers. It is shown by IR spectroscopy that hydrogen bonds can be formed between a dye molecule and vinylidene fluoride units located in amorphous regions. A model is formulated, which provides a correlation between the electrical and structural properties of the doped films.

Notes

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project no. 18-03-00493, and the Ministry of Education and Science of the Russian Federation, project no. 16.2811.2017/4.6. Investigations by scanning probe microscopy were supported by the Ministry of Education and Science of the Russian Federation and performed using equipment of the Shared Research Center “Materials Science and Metallurgy” of the National University of Science and Technology MISiS (project no. 11.9706.2017/7.8). Electron spectroscopy investigations were supported by the Russian Foundation for Basic Research, project no. 16-32-00914.

REFERENCES

  1. 1.
    T. T. Wang, J. M. Herbert, and A. M. Glass, The Application of Ferroelectric Polymers (Blackie, Glasgow, 1988).Google Scholar
  2. 2.
    H. S. Nalwa, Ferroelectric Polymers: Chemistry, Physics and Applications (Marcel Dekker, New York, 1995).CrossRefGoogle Scholar
  3. 3.
    V. V. Kochervinskii, Usp. Khim. 63 (4), 383 (1994).CrossRefGoogle Scholar
  4. 4.
    T. Abidin, Q. Zhang, K. L. Wang, and D. J. Liaw, Polymer 55 (21), 5293 (2014).CrossRefGoogle Scholar
  5. 5.
    M. Wang, S. A. Vail, A. E. Keirstead, et al., Polymer 50 (16), 3974 (2009).CrossRefGoogle Scholar
  6. 6.
    R. Zhou, W. Liu, J. Kong, et al., Polymer 55 (6), 1520 (2014).CrossRefGoogle Scholar
  7. 7.
    K. A. Verkhovskaya and A. S. Tatikolov, Fiz. Tverd. Tela 35 (8), 2276 (1993).Google Scholar
  8. 8.
    K. A. Verkhovskaya, V. M. Fridkin, A. V. Bune, et al., J. Appl. Phys. 75 (1), 663 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    K. A. Verkhovskaya, N. D. Gavrilova, V. K. Novik, et al., Vestn. Mosk. Univ. Ser. 3, No. 3, 41 (1997).Google Scholar
  10. 10.
    A. G. Chaplygin and K. A. Verkhovskaya, Vestn. Mosk. Univ. Ser. 3, No. 5, 34 (1999).Google Scholar
  11. 11.
    V. V. Kochervinskii, D. A. Kiselev, M. D. Malinkovich, et al., Proc. I Russian Crystallographic Congress, Moscow, November 21–26, 2016, p. 399.Google Scholar
  12. 12.
    V. V. Kochervinskii, Usp. Khim. 65 (10), 936 (1996).CrossRefGoogle Scholar
  13. 13.
    V. Kochervinskii et al., J. Appl. Phys. 117 (21), 214101 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    L. V. Levshin and D. M. Akbarova, Zh. Prikl. Spektrosk. 2 (1), 69 (1965).Google Scholar
  15. 15.
    L. V. Levshin, E. A. Bobrovskaya, and T. D. Slavnova, Zh. Prikl. Spektrosk. 5 (5), 648 (1966).Google Scholar
  16. 16.
    Yu. A. Mittsel’, L. V. Levshchin, A. P. Golovina, and E. A. Bobrovskaya, Vestn. Mosk. Univ. 1, 74 (1968).Google Scholar
  17. 17.
    D. Toptygin, B. Z. Packard, and L. Brand, Chem. Phys. Lett. 277 (5–6), 430 (1997).ADSCrossRefGoogle Scholar
  18. 18.
    D. V. Ageev, S. V. Patsaeva, B. D. Ryzhikov, et al., J. Appl. Spectrosc. 75 (5), 653 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    G. S. S. Saini, S. Kaur, S. K. Tripathi, et al., Spectrochim. Acta A: Mol. Biomol. Spectrosc. 61 (4), 653 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    M. Lofaj, I. Valent, and J. Bujdák, Open Chem. 11 (10), 1606 (2013).CrossRefGoogle Scholar
  21. 21.
    V. Martínez Martínez., F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, J. Phys. Chem. B 109 (15), 7443 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. V. Kochervinskii
    • 1
  • N. V. Kozlova
    • 1
  • N. A. Shmakova
    • 1
    • 6
  • A. V. Kalabukhova
    • 1
  • D. A. Kiselev
    • 2
  • M. D. Malinkovich
    • 2
  • M. A. Gradova
    • 3
  • O. V. Gradov
    • 4
  • S. A. Bedin
    • 5
  1. 1.Karpov Research Institute of Physical Chemistry (Branch)MoscowRussia
  2. 2.National University of Science and Technology MISiSMoscowRussia
  3. 3.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia
  4. 4.Talroze Institute of Energy Problems of Chemical Physics, Russian Academy of SciencesMoscowRussia
  5. 5.Moscow State Pedagogical UniversityMoscowRussia
  6. 6.Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of SciencesMoscowRussia

Personalised recommendations