Advertisement

Crystallography Reports

, Volume 63, Issue 3, pp 303–313 | Cite as

Polymorphic Modifications of Chitosan

  • Y. G. Baklagina
  • V. V. KlechkovskayaEmail author
  • S. V. Kononova
  • V. A. Petrova
  • D. N. Poshina
  • A. S. Orekhov
  • Y. A. Skorik
Reviews

Abstract

This work describes the analysis of the crystal structures of chitosan, its main polymorphic modifications, and its characteristic mutual chain packing and hydrogen bond systems in the crystalline regions of conformers. The analysis takes into consideration the crystal structures of chitosan complexes (salts) with organic and inorganic acids and their structural transformations. Notably, the transformation of the hydrated form of chitosan into anhydrous is found to be irreversible and occurs either at high temperatures or through a less stable form of hydrated salts. The interaction with polyanions during the formation of multilayer films can be considered as a way to form the anhydrous crystalline form of chitosan.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Yang, H. Li, M. Huang, et al., Water Res. 95, 59 (2016).CrossRefGoogle Scholar
  2. 2.
    E. Guibal, Sep. Purifi. Technol. 38 (1), 43 (2004).CrossRefGoogle Scholar
  3. 3.
    A. S. Kritchenkov, S. Andranovitš, and Y. A. Skorik, Russ. Chem. Rev. 86 (3), 231 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    A. S. Berezin, E. A. Lomkova, and Y. A. Skorik, Russ. Chem. Bull. 61 (4), 781 (2012).CrossRefGoogle Scholar
  5. 5.
    A. Anitha, S. Sowmya, P. T. S. Kumar, et al., Prog. Polym. Sci. 39 (9), 1644 (2014).CrossRefGoogle Scholar
  6. 6.
    V. V. Kiroshka, V. A. Petrova, D. D. Chernyakov, et al., J. Mater. Sci.: Mater. Med. 28 (1), 21 (2016).Google Scholar
  7. 7.
    I. Younes and M. Rinaudo, Mar. Drugs 13 (3), 1133 (2015).CrossRefGoogle Scholar
  8. 8.
    J. Kumirska, M. Czerwicka, Z. Kaczyński, et al., Mar. Drugs. 8 (5), 1567 (2010).CrossRefGoogle Scholar
  9. 9.
    K. Ogawa, T. Yui, and K. Okuyama, Int. J. Biol. Macromol. 34 (1–2), 1 (2004).CrossRefGoogle Scholar
  10. 10.
    G. L. Clark and A. F. Smith, J. Phys. Chem. 40 (7), 863 (1937).CrossRefGoogle Scholar
  11. 11.
    K. Okuyama, K. Noguchi, T. Miyazawa, et al., Macromolecules 30 (19), 5849 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    K. Okuyama, K. Noguchi, M. Kanenari, et al., Carbohydr. Polym. 41 (3), 237 (2000).CrossRefGoogle Scholar
  13. 13.
    K. Sakurai, M. Takagi, and T. Takahashi, Sen’i Gakkaishi 40 (7), T246 (1984).CrossRefGoogle Scholar
  14. 14.
    K. Ogawa and T. Yui, Biosci., Biotechnol., Biochem. 57 (9), 1466 (1993).CrossRefGoogle Scholar
  15. 15.
    E. A. Takara, J. Marchese, and N. A. Ochoa, Carbohydr. Polym. 132, 25 (2015).CrossRefGoogle Scholar
  16. 16.
    R. J. Samuels, J. Polym. Sci: Polym. Phys. Ed. 19 (7), 1081 (1981).ADSGoogle Scholar
  17. 17.
    K. Sakurai, T. Shibano, K. Kimura, et al., Sen’i Gakkaishi. 41 (9), T361 (1985).CrossRefGoogle Scholar
  18. 18.
    K. Ogawa, S. Hirano, T. Miyanishi, et al., Macromolecules 17 (4), 973 (1984).ADSCrossRefGoogle Scholar
  19. 19.
    T. Yui, K. Imada, K. Okuyama, et al., Macromolecules 27 (26), 7601 (1994).ADSCrossRefGoogle Scholar
  20. 20.
    K. Mazeau, W. T. Winter, and H. Chanzy, Macromolecules 27 (26), 7606 (1994).ADSCrossRefGoogle Scholar
  21. 21.
    N. Cartier, A. Domard, and H. Chanzy, Int. J. Biol. Macromol. 12 (5), 289 (1990).CrossRefGoogle Scholar
  22. 22.
    H. Chanzy, G. Excoffier, and C. Guizard, Carbohydr. Polym. 1 (1), 67 (1981).CrossRefGoogle Scholar
  23. 23.
    C. Guizard, H. Chanzy, and A. Sarko, Macromolecules 17 (1), 100 (1984).ADSCrossRefGoogle Scholar
  24. 24.
    C. Guizard, H. Chanzy, and A. Sarko, J. Mol. Biol. 183 (3), 397 (1985).CrossRefGoogle Scholar
  25. 25.
    P.-K. Naito, Y. Ogawa, D. Sawada, et al., Biopolymers 105 (7), 361 (2016).CrossRefGoogle Scholar
  26. 26.
    P.-K. Naito, Y. Ogawa, S. Kimura, et al., J. Polym. Sci. B: Polym. Phys. 53 (15), 1065 (2015).ADSCrossRefGoogle Scholar
  27. 27.
    Y. Ogawa, S. Kimura, Y. Saito, et al., Carbohydr. Polym. 90 (1), 650 (2012).CrossRefGoogle Scholar
  28. 28.
    Y. Horikawa and J. Sugiyama, Cellulose 15 (3), 419 (2008).CrossRefGoogle Scholar
  29. 29.
    K. Ogawa, Agric. Biol. Chem. 55 (9), 2375 (1991).Google Scholar
  30. 30.
    K. Ogawa and S. Inukai, Carbohydr. Res. 160, 425 (1987).CrossRefGoogle Scholar
  31. 31.
    K. Okuyama, K. Osawa, Y. Hanafusa, et al., J. Carbohydr. Chem. 19 (6), 789 (2000).CrossRefGoogle Scholar
  32. 32.
    P. Cairns, M. J. Miles, V. J. Morris, et al., Carbohydr. Res. 235, 23 (1992).CrossRefGoogle Scholar
  33. 33.
    H. Saito, R. Tabeta, and K. Ogawa, Macromolecules 20 (10), 2424 (1987).ADSCrossRefGoogle Scholar
  34. 34.
    M. Kawahara, T. Yui, K. Oka, et al., Biosci., Biotechnol., Biochem. 67 (7), 1545 (2003).CrossRefGoogle Scholar
  35. 35.
    J. Kawada, T. Yui, K. Okuyama, et al., Biosci., Biotechnol., Biochem. 65 (11), 2542 (2001).CrossRefGoogle Scholar
  36. 36.
    K. Sakurai, T. Shibano, and T. Takahashi, Mem. Fac. Eng. Fokui Univ. 33 (1), 71 (1985).Google Scholar
  37. 37.
    A. Lertworasirikul, K. Noguchi, K. Ogawa, et al., Carbohydr. Res. 339 (4), 835 (2004).CrossRefGoogle Scholar
  38. 38.
    A. Yamamoto, J. Kawada, T. Yui, et al., Biosci., Biotechnol., Biochem. 61 (7), 1230 (1997).CrossRefGoogle Scholar
  39. 39.
    S. Demarger-Andre and A. Domard, Carbohydr. Polym. 23 (3), 211 (1994).CrossRefGoogle Scholar
  40. 40.
    K. Ogawa, K. Nakata, A. Yamamoto, et al., Chem. Mater. 8 (9), 2349 (1996).CrossRefGoogle Scholar
  41. 41.
    J. Kawada, Y. Abe, T. Yui, et al., J. Carbohydr. Chem. 18 (5), 559 (1999).CrossRefGoogle Scholar
  42. 42.
    C. Madeleine-Perdrillat, T. Karbowiak, J. Raya, et al., Carbohydr. Polym. 118, 107 (2015).CrossRefGoogle Scholar
  43. 43.
    M. A. Krayukhina, N. A. Samoilova, and I. A. Yamskov, Usp. Khim. 77 (9), 854 (2008).CrossRefGoogle Scholar
  44. 44.
    S. V. Kononova, A. V. Volod’ko, V. A. Petrova, et al., Carbohydr. Polym. 181, 86 (2018).CrossRefGoogle Scholar
  45. 45.
    Yu. G. Baklagina, S. V. Kononova, V. A. Petrova, et al., Crystallogr. Rep. 58 (2), 287 (2013).ADSCrossRefGoogle Scholar
  46. 46.
    V. A. Petrova, A. S. Orekhov, D. D. Chernyakov, et al., Crystallogr. Rep. 61 (6), 945 (2016).ADSCrossRefGoogle Scholar
  47. 47.
    F. Feng, Y. Liu, B. Zhao, et al., Procedia Eng. 27, 718 (2012).CrossRefGoogle Scholar
  48. 48.
    M. Jaworska, K. Sakurai, P. Gaudon, et al., Polym. Int. 52 (2), 198 (2003).CrossRefGoogle Scholar
  49. 49.
    Y. Zhang, C. Xue, Y. Xue, et al., Carbohydr. Res. 340 (11), 1914 (2005).CrossRefGoogle Scholar
  50. 50.
    G. Qun, W. Ajun, and Z. Yong, J. Appl. Polym. Sci. 104 (4), 2720 (2007).CrossRefGoogle Scholar
  51. 51.
    C. Y. Choi, S. B. Kim, P. K. Pak, et al., Carbohydr. Polym. 68 (1), 122 (2007).CrossRefGoogle Scholar
  52. 52.
    K. Kurita, Y. Kaji, T. Mori, et al., Carbohydr. Polym. 42 (1), 19 (2000).CrossRefGoogle Scholar
  53. 53.
    M. Hasegawa, A. Isogai, and F. Onabe, Carbohydr. Polym. 20 (4), 279 (1993).CrossRefGoogle Scholar
  54. 54.
    A. Lertworasirikul, S. Yokoyama, K. Noguchi, et al., Carbohydr. Res. 339 (4), 825 (2004).CrossRefGoogle Scholar
  55. 55.
    J. Kawada, T. Yui, Y. Abe, et al., Biosci., Biotechnol., Biochem. 62 (4), 700 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • Y. G. Baklagina
    • 1
  • V. V. Klechkovskaya
    • 2
    Email author
  • S. V. Kononova
    • 1
  • V. A. Petrova
    • 1
  • D. N. Poshina
    • 1
  • A. S. Orekhov
    • 2
    • 3
  • Y. A. Skorik
    • 1
    • 4
  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of SciencesMoscowRussia
  3. 3.National Research Centre “Kurchatov Institute,”MoscowRussia
  4. 4.Almazov National Medical Research CentreSt. PetersburgRussia

Personalised recommendations