Crystallography Reports

, Volume 63, Issue 2, pp 158–165 | Cite as

X-Ray Natural Circular Dichroism in Langasite Crystal at the Ga and La Edges

  • A. P. Oreshko
  • B. V. Mill
  • E. N. Ovchinnikova
  • A. Rogalev
  • F. Wilhelm
  • V. E. Dmitrienko
Diffraction and Scattering of Ionizing Radiations
  • 5 Downloads

Abstract

X-ray natural circular dichroism (XNCD) and its structural nature have been investigated in a langasite (La3Ga5SiO14) crystal at an incident radiation energy close to the Ga K-absorption edge and the La L2,3-absorption edges. An XNCD signal was observed mainly beyond the absorption edge, which confirmed the existence of delocalized mixed p–d electronic states in Ga and df and dp electronic states in La. Calculations with application of the multiple scattering method have made it possible to separate the contributions from three crystallographically nonequivalent Ga sites to the absorption spectrum and the XNCD signal and explain adequately the largest contribution of the Ga atom occupying the 1a site to the XNCD signal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. V. Mill’, A. V. Butashin, G. G. Khodzhabagyan, et al., Dokl. Akad. Nauk SSSR, 264 (6), 1385 (1982).Google Scholar
  2. 2.
    A. A. Kaminsky, B. V. Mill’, S. E. Sarkisov, et al., Physics and Spectroscopy of Laser Crystals (Nauka, Moscow, 1986) [in Russian], p.197.Google Scholar
  3. 3.
    B. V. Mill and Yu. V. Pisarevsky, Proc IEEE/EIA Intern. Frequency Control Symp., Kansas City, Missouru, USA, 2000, p.133.Google Scholar
  4. 4.
    H. Ohsato, T. Iwataki, and H. Morikoshi, Trans. Electr. Electron. Mater. 13, 171 (2012).CrossRefGoogle Scholar
  5. 5.
    E. Chilla, C. M. Flannery, and H.-J. Fröhlich, J. Appl. Phys. 90, 6084 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    D. V. Roshchupkin, D. V. Irzhak, R. Tucoulou, and O. A. Buzanov, J. Appl. Phys. 94, 6692 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    J. Stade, L. Bohatý, M. Hengst, and R. B. Heimann, Cryst. Res. Technol. 37, 1113 (2002).CrossRefGoogle Scholar
  8. 8.
    V. Yu. Ivanov, A. A. Mukhin, A. S. Prokorov, and B. V. Mill, Solid State Phenom. 152–153, 299 (2009).CrossRefGoogle Scholar
  9. 9.
    K. Marty, P. Bordet, V. Simonet, et al., Phys. Rev. B 81, 054416 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    A. Zorko, M. Pregelj, A. Potocnik, et al., Phys. Rev. Lett. 107, 257203 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    J. W. Krizan, la. Cruz. C. de, N. H. Andersen, and R. J. Cava, J. Solid State Chem. 203, 310 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    S. A. Pikin and I. S. Lyubutin, Phys. Rev. B 86, 064414 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    C. Lee, E. Kan, H. Xiang, and M. H. Whangbo, Chem. Mater. 22 (18), 5290 (2010).CrossRefGoogle Scholar
  14. 14.
    J. Sato, H. Takeda, H. Morikoshi, et al., J. Cryst. Growth 191, 746 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    M. Adachi, T. Funakawa, and T. Karaki, Ferroelectrics 286, 43 (2003).CrossRefGoogle Scholar
  16. 16.
    H. Takeda, J. Yamaura, T. Hoshina, and T. Tsusrumi, IOP Conf. Series: Mater. Sci. Eng. 18, 092020 (2011).CrossRefGoogle Scholar
  17. 17.
    A. Rogalev, J. Goulon, F. Wilhelm, et al., Crystallogr. Rep. 53 (3), 384 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    K. A. Kozlovskaya, Candidate’s Dissertation in Physics and Mathematics (Moscow State University, Moscow, 2009).Google Scholar
  19. 19.
    E. N. Ovchinnikova, A. Rogalev, F. Wilhelm, et al., JETP 123 (1), 27 (2016).ADSCrossRefGoogle Scholar
  20. 20.
    L. Alagna, T. Prosperi, S. Turchini, et al., Phys. Rev. Lett. 80, 4799 (1998).ADSCrossRefGoogle Scholar
  21. 21.
    C. Brouder, Lopez. M. F. Ruiz, R. F. Pettifer, et al., Phys. Rev. B 39, 1488 (1989).ADSCrossRefGoogle Scholar
  22. 22.
    C. R. Natoli, Ch. Brouder, Ph. Sainctavit, et al., Eur. Phys. J. B 4, 1 (1998).ADSCrossRefGoogle Scholar
  23. 23.
    R. D. Peacock and B. Stewart, J. Phys. Chem. B 105, 351 (2001).CrossRefGoogle Scholar
  24. 24.
    J. Goulon, A. Rogalev, F. Wilhelm, et al., JETP 97 (2), 402 (2003).ADSCrossRefGoogle Scholar
  25. 25.
    J. Goulon, A. Rogalev, F. Wilhelm, et al., J. Phys.: Condens. Matter 15, S633 (2003).Google Scholar
  26. 26.
    R. D. Cowan, The Theory of Atomic Structure and Spectra (Univ. of California Press, Berkeley, 1981).Google Scholar
  27. 27.
    L. D. Barron, Mol. Phys. 43, 1395 (1981).ADSCrossRefGoogle Scholar
  28. 28.
    V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons (Springer, New York, 1984).CrossRefGoogle Scholar
  29. 29.
    G. A. Smolenskii, R. V. Pisarev, and I. G. Sinii, Usp. Fiz. Nauk 116 (2), 231 (1975).CrossRefGoogle Scholar
  30. 30.
    V. A. Kizel’ and V. I. Burkov, Gyrotropy of Crystals (Nauka, Moscow, 1980) [in Russian].Google Scholar
  31. 31.
    J. Jerphagnon and D. S. Chemla, J. Chem. Phys. 65, 1522 (1976).ADSCrossRefGoogle Scholar
  32. 32.
    B. A. Maksimov, V. N. Molchanov, B. V. Mill’, et al., Crystallogr. Rep. 50 (5), 751 (2005).ADSCrossRefGoogle Scholar
  33. 33.
    A. P. Oreshko, E. N. Ovchinnikova, A. Rogalev, et al., J. Synchrotron. Radiat. (2017) (in press).Google Scholar
  34. 34.
    V. I. Burkov, E. P. Perederei, E. V. Fedotov, et al., Crystallogr. Rep. 53 (5), 843 (2008).ADSCrossRefGoogle Scholar
  35. 35.
    T. F. Veremeichik, Crystallogr. Rep. 56 (6), 1060 (2011).ADSCrossRefGoogle Scholar
  36. 36.
    A. Rogalev, J. Goulon, C. Goulon-Ginet, and C. Malgrange, Springer Lecture Notes Phys. 565, 60 (2001).ADSCrossRefGoogle Scholar
  37. 37.
    M. Krause and J. Oliver, J. Phys. Chem. Ref. Data. 8, 329 (1979).ADSCrossRefGoogle Scholar
  38. 38.
    J. Goulon, C. Goulon-Ginet, R. Cortes, and J. M. Dubois, J. Phys. (Paris) 43, 539 (1982).CrossRefGoogle Scholar
  39. 39.
    M. Loos, I. Ascone, C. Goulon-Ginet, et al., Phys. B: Condens. Matter 158, 145 (1989).ADSCrossRefGoogle Scholar
  40. 40.
    Ch. Brouder, J. Phys.: Condens. Matter 2, 701 (1990).ADSGoogle Scholar
  41. 41.
    A. A. Kaminskii, B. V. Mill, G. G. Hojabagyan, et al., Phys. Status Solidi A 80 (1), 387 (1983).ADSCrossRefGoogle Scholar
  42. 42.
    T. G. Golovina, A. F. Konstantinova, B. V. Nabatov, et al., Proc. 1st Crystallographic Congress, November 21–26, 2016, Moscow, p.67.Google Scholar
  43. 43.
    V. E. Dmitrienko, K. Ishida, A. Kirfel, and E. N. Ovchinnikova, Acta Crystallogr. A 61, 481 (2005).ADSCrossRefGoogle Scholar
  44. 44.
    M. Zschornak, C. Richter, M. Nentwich, et al., Cryst. Res. Technol. 49, 43 (2014).CrossRefGoogle Scholar
  45. 45.
    O. Bunau and Y. Joly, Phys. Rev. B 85, 155121 (2012).ADSCrossRefGoogle Scholar
  46. 46.
    http://www.neel.cnrs.fr/fdmnes.Google Scholar
  47. 47.
    E. Zanazzi and F. Jona, Surf. Sci. 62, 61 (1977).ADSCrossRefGoogle Scholar
  48. 48.
    A. P. Dudka and B. V. Mill’, Crystallogr. Rep. 59 (5), 689 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. P. Oreshko
    • 1
  • B. V. Mill
    • 1
  • E. N. Ovchinnikova
    • 1
  • A. Rogalev
    • 2
  • F. Wilhelm
    • 2
  • V. E. Dmitrienko
    • 3
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.European Synchrotron Radiation FacilityGrenobleFrance
  3. 3.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of SciencesMoscowRussia

Personalised recommendations