Advertisement

Crystallography Reports

, Volume 62, Issue 1, pp 31–39 | Cite as

Features of the structural states of KNbO3 single crystals before and after fast-neutron irradiation

  • A. I. StashEmail author
  • S. A. Ivanov
  • S. Yu. Stefanovich
  • A. V. Mosunov
  • V. M. Boyko
  • V. S. Ermakov
  • A. V. Korulin
  • A. I. Kalyukanov
Diffraction and Scattering of Ionizing Radiations
  • 52 Downloads

Abstract

Neutron irradiation is a unique tool for forming new structural states of ferroelectrics, which cannot be obtained by conventional methods. The inf luence of the irradiation by two doses of fast neutrons (F = 1 × 1017 and 3 × 1017 cm–2) on the structure and properties of KNbO3 single crystals has been considered for the first time. The developed method for taking into account the experimental correction to the diffuse scattering has been used to analyze the structural changes occurring in KNbO3 samples at T = 295 K and their correlations with the behavior of dielectric and nonlinear optical characteristics. The irradiation to the aforementioned doses retains the KNbO3 polar structure, shifting Т С to lower temperatures and significantly affecting only the thermal parameters and microstructure of single crystals. Neutron irradiation with small atomic displacements provides a structure similar to the high-temperature modification of an unirradiated KNbO3 crystal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. E. Lines and A. M. Glass, Princiles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).Google Scholar
  2. 2.
    Defects and Surface-Induced Effects in Advanced Perovskites, Ed. by G. Borstel (Springer, 1999).Google Scholar
  3. 3.
    G. S. Was, Fundamentals of Radiation Materials Science (Springer, Heidelberg, 2007).Google Scholar
  4. 4.
    R. E. Stoller, Comprehensive Nuclear Materials: Primary Radiation Damage Formation (Elsevier, 2012), p.293.CrossRefGoogle Scholar
  5. 5.
    S. P. Solov’ev, I. I. Kuz’min, and V. V. Zakurkin, Barium Titanate (Nauka, Moscow, 1973) [in Russian], p.263.Google Scholar
  6. 6.
    V. V. Zakurkin, S. P. Solov’ev, and I. I. Kuz’min, Izv. Akad. Nauk SSSR, Ser. Fiz. 35, 1148 (1971).Google Scholar
  7. 7.
    A. Holmes-Siedle and L. Adams, Handbook of Radiation Effects (Oxford Univ. Press, New York, 1993).Google Scholar
  8. 8.
    E. V. Peshikov, Radiative Effects in Ferroelectrics (Fan, Tashkent, 1986) [in Russian], p.126.Google Scholar
  9. 9.
    J. F. Scott, Ferroelectric Memories (Springer, Berlin, 2000).CrossRefGoogle Scholar
  10. 10.
    S. Wada, A. Seike, and T. Tsurumi, Jpn. J. Appl. Phys. 40, 5690 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    K. Nakamura Tokiwa, and Y. Kawamura, J. Appl. Phys. 91, 9272 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    R. J. Reeves, M. G. Jani, B. Jassemnejad, et al., Phys. Rev. B 43, 71 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    M. Zgonik, R. Schlesser, I. Biaggio, et al., J. Appl. Phys. 74, 1287 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    J. C. Baumert, C. Walther, P. Buchmann, et al., Appl. Phys. Lett. 46, 1018 (1985).ADSCrossRefGoogle Scholar
  15. 15.
    Photorefractive Materials and Their Applications, Parts I and II, Ed. by P. Günter and J. P. Huignard (Springer, Berlin, 1989).Google Scholar
  16. 16.
    Physics of Ferroelectrics: A Modern Perspective, Ed. by K. M. Rabe (Springer, Berlin, 2007).Google Scholar
  17. 17.
    G. A. Smolenskii, V. A. Bokov, V. A. Isupov, et al., Ferroelectrics and Related Materials, Ed. by G. A. Smolenskii (Gordon and Breach Science, Amsterdam, 1984).Google Scholar
  18. 18.
    G. Shirane, N. Danner, A. Pavlovic, and R. Pepinsky, Phys. Rev. 93, 672 (1954).ADSCrossRefGoogle Scholar
  19. 19.
    O. Hauser and M. Schenk, Phys. Status Solidi 18, 547 (1966).CrossRefGoogle Scholar
  20. 20.
    M. Schenk, Phys. Status Solidi 36, K31 (1969).ADSCrossRefGoogle Scholar
  21. 21.
    V. A. D’yakov, A. A. Podshivalov, and V. S. Syrtsov, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron. 5, 28 (2004).Google Scholar
  22. 22.
    V. A. D’yakov, V. I. Pryalkin, and A. I. Kholodnykh, Kvantovaya Elektron. 8, 715 (1981).Google Scholar
  23. 23.
    Z. Samardzija, S. Bernik, R. B. Marinenko, et al., Microchim. Acta 145, 203 (2004).CrossRefGoogle Scholar
  24. 24.
    S. F. Dubinin and V. D. Parkhomenko, Fiz. Met. Metalloved. 90 (2), 83 (2000).Google Scholar
  25. 25.
    Yu. G. Chukalkin, V. R. Shtirts, and B. N. Goshchitskii, Phys. Status Solidi A 125, 301 (1991).ADSCrossRefGoogle Scholar
  26. 26.
    A. Meldrum, L. A. Boatner, W. J. Weber, and R. C. Ewing, J. Nucl. Mater. 300, 242 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    C. J. Ball, R. G. Blake, D. J. Cassidy, and J. L. Woolfrey, J. Nucl. Mater. 51, 151 (1988).ADSCrossRefGoogle Scholar
  28. 28.
    G. M. Sheldrick, Acta Crystallogr. A 64, 112 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    A. I. Stash, S. A. Ivanov, S. Yu. Stefanovich, et al., Kristallografiya 60 (1), 68 (2015).Google Scholar
  30. 30.
    N. W. Alcock, Crystallographic Computing, Ed. by F. R. Ahmed (Munksgaard, Copenhagen, 1970).Google Scholar
  31. 31.
    A. I. Stash and V. E. Zavodnik, Crystallogr. Rep. 41 (3), 404 (1996).ADSGoogle Scholar
  32. 32.
    E. A. Kotomin, R. I. Eglitis, G. Borstel, et al., Nucl. Instrum. Methods Phys. Res. B 166–167, 299 (2000).CrossRefGoogle Scholar
  33. 33.
    D. V. Kulikov and Yu. A. Trushin, Ferroelectrics 308, 5 (2004).CrossRefGoogle Scholar
  34. 34.
    B. K. Roul, J. Mater. Synth. Process. 7, 321 (1999).CrossRefGoogle Scholar
  35. 35.
    S. C. Abrahams, S. K. Kurtz, and P. B. Jamieson, Phys. Rev. 172, 551 (1968).ADSCrossRefGoogle Scholar
  36. 36.
    L. A. Muradyan, S. F. Radaev, and V. I. Simonov, Methods of Structural Analysis (Nauka, Moscow, 1989) [in Russian], p.5.Google Scholar
  37. 37.
    L. Katz and H. D. Megaw, Acta Crystallogr. 22, 639 (1967).CrossRefGoogle Scholar
  38. 38.
    A. D. Hewat, J. Phys. C: Solid State Phys. 6, 2559 (1973).ADSCrossRefGoogle Scholar
  39. 39.
    V. A. Shuvaeva and M. Yu. Antipin, Crystallogr. Rep. 40, 466 (1995).ADSGoogle Scholar
  40. 40.
    N. Kumada, T. Kyoda, Y. Yonesaki, et al., Mater. Res. Bull. 42, 1856 (2007).CrossRefGoogle Scholar
  41. 41.
    V. G. Tsarkov and V. G. Tsirelson, Phys. Status Solidi B 167, 417 (1991).ADSCrossRefGoogle Scholar
  42. 42.
    A. G. Kalinichev, J. D. Bass, C. S. Zhab, et al., J. Appl. Phys. 74, 6603 (1993).ADSCrossRefGoogle Scholar
  43. 43.
    R. Comes, M. Lambert, and A. Guinier, Solid State Commun. 6, 715 (1968).ADSCrossRefGoogle Scholar
  44. 44.
    R. Comes, M. Lambert, and A. Guinier, Acta Crystallogr. A 26, 244 (1970).ADSCrossRefGoogle Scholar
  45. 45.
    M. Holma, N. Takesue, and H. Chen, Ferroelectrics 164, 237 (1995).CrossRefGoogle Scholar
  46. 46.
    N. Takesue, M. Maglione, and H. Chen, Phys. Rev. B 51, 6696 (1995).ADSCrossRefGoogle Scholar
  47. 47.
    E. A. Kotomin and A. I. Popov, Nucl. Instrum. Methods Phys. Res. B 141, 1 (1998).ADSCrossRefGoogle Scholar
  48. 48.
    E. A. Kotomin, R. I. Eglitis, G. Borstel, et al., Nucl. Instrum. Methods Phys. Res. B 166–167, 299 (2000).CrossRefGoogle Scholar
  49. 49.
    S. G. Ingle, J. G. Dupare, and R. N. Kakde, J. Phys. Chem. Solids 56, 173 (1995).ADSCrossRefGoogle Scholar
  50. 50.
    B. K. Roul, R. N. P. Chaudhary, and K. V. Raod, Ferroelectrics Lett. 6, 139 (1986).CrossRefGoogle Scholar
  51. 51.
    R. I. Eglitis, E. A. Kotomin, A. V. Postnikov, et al., Ferroelectrics 229, 69 (1999).CrossRefGoogle Scholar
  52. 52.
    D. S. Gemmel and R. C. Mikkelson, Phys. Rev. B 6, 1613 (1972).ADSCrossRefGoogle Scholar
  53. 53.
    E. C. Buck, Radiat. Eff. Defects Solids 133, 15 (1995).ADSCrossRefGoogle Scholar
  54. 54.
    Q. Li, J. Chen, B.-L. Liao, and D. Feng, Radiat. Eff. Defects Solids 74, 307 (1983).Google Scholar
  55. 55.
    H. Chen, Y. Zhang, and Y. Lu, Nanoscale Res. Lett. 6, 530 (2011).ADSCrossRefGoogle Scholar
  56. 56.
    K. Tanaka, K. Kakimoto, and H. Ohsato, J. Eur. Ceram Soc. 27, 3591 (2007).CrossRefGoogle Scholar
  57. 57.
    S. Sawai, H. Yamada, A. Iba, et al., Ferroelectrics 433, 45 (2012).CrossRefGoogle Scholar
  58. 58.
    C. Miclea, C. Tanasoiu, C. F. Miclea, et al., J. Phys. 128, 115 (2005).Google Scholar
  59. 59.
    M. I. Toacsan, A. Ioachim, L. Nedelcu, and H. V. Alexandru, Prog. Solid State Chem. 35, 531 (2007).CrossRefGoogle Scholar
  60. 60.
    P. W. M. Jacobs, E. A. Kotomin, and R. I. Eglitis, J. Phys.: Condens. Matter 12, 569 (2000).ADSGoogle Scholar
  61. 61.
    E. V. Kolontsova, Usp. Fiz. Nauk 151, 149 (1987).CrossRefGoogle Scholar
  62. 62.
    D. Orobengoa, C. Capillas, M. I. Aroyo, and J. M. Perez-Mato, J. Appl. Crystallogr. A 42, 820 (2009).CrossRefGoogle Scholar
  63. 63.
    J. M. Perez-Mato, D. Orobengoa, and M. I. Aroyo, Acta Crystallogr. A 66, 558 (2010).ADSCrossRefGoogle Scholar
  64. 64.
    H. F. Kay and P. Vousden, Philos. Mag. 40, 1019 (1949).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. I. Stash
    • 1
    Email author
  • S. A. Ivanov
    • 1
  • S. Yu. Stefanovich
    • 1
  • A. V. Mosunov
    • 1
  • V. M. Boyko
    • 1
  • V. S. Ermakov
    • 1
  • A. V. Korulin
    • 1
  • A. I. Kalyukanov
    • 1
  1. 1.State Scientific Center of the Russian Federation Karpov Institute of Physical ChemistryMoscowRussia

Personalised recommendations