Advertisement

Crystallography Reports

, Volume 61, Issue 4, pp 653–665 | Cite as

Multilevel description of the DNA molecule translocation in solid-state synthetic nanopores

  • V. L. NosikEmail author
  • E. B. Rudakova
Nanomaterials
  • 53 Downloads

Abstract

Interest of researchers in micro- and nanofluidics of polymer solutions and, in particular, DNA ionic solutions is constantly increasing. The use of DNA translocation with a controlled velocity through solid-state nanopores and pulsed X-ray beams in new sequencing schemes opens up new possibilities for studying the structure of DNA and other biopolymers. The problems related to the description of DNA molecular motion in a limited volume of nanopore are considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Salim, P. Wright, and S. McArthur, Electrophoresis 30 (11), 1877 (2009).CrossRefGoogle Scholar
  2. 2.
    Y. Xu, M. Takai, T. Konnoa, and K. Ishiharaa, Lab Chip. 7, 199 (2007).CrossRefGoogle Scholar
  3. 3.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980), Part 1.Google Scholar
  4. 4.
    J. J. Kasianowicz, E. Brandin, D. Branton, et al., Proc. Natl. Acad. Sci. USA 93, 13770 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    B. Hille, Ionic Channels of Excitable Membranes, 3rd edition (Sinauer, Sunderland, MA, 2001).Google Scholar
  6. 6.
    J. Li, M. Gershow, D. Stein, et al., Nat. Mater. 2, 611 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    A. J. Storm, C. Storm, J. Chen, et al., Nano Lett. 5, 1193 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    D. Fologea, M. Gershow, B. Ledden, et al., Nano Lett. 5, 1905 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    H. Chang, F. Kosari, G. Andreadakis, et al., Nano Lett. 4, 1551 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    J. B. Heng, C. Ho, T. Kim, et al., Biophys. J. 87, 2905 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    M. Wanunu, J. Sutin, B. McNally, et al., Biophys. J. 95, 4716 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    S. L. Levy and H. G. Craighead, Chem. Soc. Rev. 39, 1133 (2010).CrossRefGoogle Scholar
  13. 13.
    A. Meller, J. Phys.: Condens. Matter 15, R581 (2003).ADSGoogle Scholar
  14. 14.
    T. Ambjornsson, S. N. Apell, Z. Konkoli, et al., J. Chem. Phys. 117, 4063 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    E. Slonkina and A. B. Kolomeisky, J. Chem. Phys. 118, 7112 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    D. J. Bonthuis, J. Zhang, B. Hornblower, et al., Phys. Rev. Lett. 97, 128104 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    J. Zhang and B. I. Shklovskii, Phys. Rev. E 75, 021906 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    U. F. Keyser, B. N. Koeleman, S. V. Dorp, et al., Nat. Phys. 2, 473 (2006).CrossRefGoogle Scholar
  19. 19.
    M. Wanunu and A. Meller, Nano Lett. 7, 1580 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    K. Luo, I. Huopaniemi, T. AlaNissala, et al., J. Chem. Phys. 124, 114704 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    C. Forrey and M. Muthukumar, J. Chem. Phys. 127, 05102 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    J. Wang and H. Gao, J. Chem. Phys. 123, 084906 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    J. Wang and H. Gao, J. Mater. Sci. 42, 8838 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    L. X. Zhang, A. Xia, and D. Zhao, Eur. Polymer J. 37, 1277 (2001).CrossRefGoogle Scholar
  25. 25.
    Y. Chen, M. Graham, J. DePablo, et al., Phys. Rev. E 70, 060901 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    K. Luo, T. AlaNissala, S. Ying, et al., Phys. Rev. Lett. 99, 148102 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    M. Bawendi and K. Freed, J. Chem. Phys. 83, 2491 (1985).ADSCrossRefGoogle Scholar
  28. 28.
    A. Bosch, Macromol. Chem. Theor. Simul. 3, 851 (1993).MathSciNetCrossRefGoogle Scholar
  29. 29.
    P. Benetatos, Phys. Rev. E 70, 051806 (2004).ADSCrossRefGoogle Scholar
  30. 30.
    A. Bosch, Phys. Rev. E 63, 061808 (2001).ADSCrossRefGoogle Scholar
  31. 31.
    B. Jerome, Rep. Prog. Phys. 54, 393 (1991).ADSCrossRefGoogle Scholar
  32. 32.
    J. Dzubiella and J. Hansen, J. Chem. Phys. 122, 234706 (2005).ADSCrossRefGoogle Scholar
  33. 33.
    E. Durand, Electrostatique, Vol. I (Masson, Paris, 1964).zbMATHGoogle Scholar
  34. 34.
    J. Li, D. Stein, C. McMullan, et al., Nature (London) 412, 166 (2001).ADSCrossRefGoogle Scholar
  35. 35.
    A. J. Storm, J. H. Chen, X. S. Ling, et al., Nat. Mater. 2, 537540 (2003).CrossRefGoogle Scholar
  36. 36.
    M. Doi, Introduction to Polymer Physics (Clarendon, Oxford, 1996).Google Scholar
  37. 37.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity, 5th edition (FIZMATLIT, Moscow, 2007; Pergamon, New York, 1984).Google Scholar
  38. 38.
    M. Doi and S. Edwards, The Theory of Polymer Dynamics (Oxford Science, 1986).Google Scholar
  39. 39.
    K. Soda, J. Phys. Soc. Jpn. 35, 866 (1973).ADSCrossRefGoogle Scholar
  40. 40.
    A. Maggs, Phys. Rev. Lett. 85, 5472 (2000).ADSCrossRefGoogle Scholar
  41. 41.
    V. L. Nosik and E. B. Rudakova, Crystallogr. Rep. 58 (6), 805 (2013).ADSCrossRefGoogle Scholar
  42. 42.
    S. L. Levy and H. G. Craighead, Chem. Soc. Rev. 39, 1141 (2010).CrossRefGoogle Scholar
  43. 43.
    R. Bu and D. J. E. Callaway, Proc. Natl. Acad. Sci. USA 102, 17646 (2005).ADSCrossRefGoogle Scholar
  44. 44.
    S. R. McGuffee and A. H. Elcock, PLoS Comput. Biol. 6, e1000694 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia

Personalised recommendations