Crystallography Reports

, Volume 61, Issue 2, pp 159–169 | Cite as

Theory of the formation of P4132(P4332)-phase spinels

Theory of Crystal Structures

Abstract

A group-theoretical, thermodynamic, and structural study of the formation of P4132(P4332) spinel modification has been performed. In particular, the occurrence of unique hyper-kagome atomic order is analyzed. The critical order parameter inducing a phase transition is established. It is shown that the calculated structure of the low-symmetry P4132(P4332) phase is formed as a result of displacements of atoms of all types and due to the cation and anion ordering. The problem of the occurrence of unique hyper-kagome atomic order in the structures of P4132(P4332) spinel modifications is considered theoretically. It is proven within the Landau theory of phase transitions that the P4132(P4332) phase can be formed from the high-symmetry Fd3m phase with an ideal spinel structure only as a result of first-order phase transition. Therefore, the formation of hyper-kagome sublattice in the P4132(P4332) phase is accompanied by a significant transformation of the spinel structure.

Keywords

Crystallography Report Spinel Structure Multicritical Point Unusual Physical Property Ible Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Vonsovskii, Yu. A. Izyumov, and E. Z. Kurmaev, Superconductivity of Transition Metals, Their Alloys and Compounds (Nauka, Moscow, 1977) [in Russian], p. c.Google Scholar
  2. 2.
    V. M. Talanov, V. B. Shirokov, V. V. Ivanov, et al., Kristallografiya 58 (1), 80 (2012).Google Scholar
  3. 3.
    D. I. Khomskii, Transition Metal Compounds (Cambridge Univ. Press, Cambridge 2014).Google Scholar
  4. 4.
    P. G. Radaelli, New J. Phys. 7, 1 (2005).CrossRefGoogle Scholar
  5. 5.
    S. Krupicka, Physik der Ferrite und der verwandten magnetischen Oxide (Academic, Prague, 1973).CrossRefGoogle Scholar
  6. 6.
    T. A. Kaplan and N. Menyuk, Philos. Mag. 87, 3711 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    D. J. Singh, P. Blaha, K. Schwarz, et al., Phys. Rev. B 60, 16359 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    V. I. Torgashev, A. S. Prokhorov, G. A. Komandin, et al., Fiz. Tverd. Tela 54, 330 (2012).Google Scholar
  9. 9.
    P. W. Anderson, Phys. Rev. 102, 1008 (1956).ADSCrossRefGoogle Scholar
  10. 10.
    S. K. Pati and C. N. R. Rao, Chem. Commun. 4683 (2008).Google Scholar
  11. 11.
    L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935).CrossRefGoogle Scholar
  12. 12.
    Y. Okamoto, M. Nohara, H. Aruga-Katori, et al., Phys. Rev. Lett. 99, 137207 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    M. J. Lawler, H.-Y. Kee, Y. B. Kim, et al., Phys. Rev. Lett. 100, 227201 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    M. R. Norman and T. Micklitz, Phys. Rev. B 81, 024428 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    V. M. Talanov, V. B. Shirokov, and M. V. Talanov, Acta Crystallogr. A 71, 301 (2015).CrossRefGoogle Scholar
  16. 16.
    Y. J. Lee, S. H. Park, C. Eng, et al., Chem. Mater. 14, 194 (2002).CrossRefGoogle Scholar
  17. 17.
    V. M. Talanov and V. B. Shirokov, Crystallogr. Rep. 58 (2), 314 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    V. P. Sakhnenko, V. M. Talanov, and G. M. Chechin, Possible Phase Transitions and Atomic Displacements in Crystals with Space Group, Available from VINITI, 1982, Tomsk, no. 638-82.Google Scholar
  19. 19.
    V. P. Sakhnenko, V. M. Talanov, and G. M. Chechin, Possible Phase Transitions and Atomic Displacements in Crystals with Space Group. 2. Analysis of Mechanical and Permutation Representations, Available from VINITI, 1983, Tomsk, no. 6379-83.Google Scholar
  20. 20.
    V. P. Sakhnenko, V. M. Talanov, and G. M. Chechin, Fiz. Met. Metalloved. 62, 847 (1986).Google Scholar
  21. 21.
    V. M. Talanov and V. B. Shirokov, Acta Crystallogr. A 68, 595 (2012).CrossRefGoogle Scholar
  22. 22.
    V. M. Talanov and V. B. Shirokov, Acta Crystallogr. A 70, 49 (2014).MathSciNetCrossRefGoogle Scholar
  23. 23.
    O. V. Kovalev, Irreducible Representations of Space Groups (Izd-vo AN USSR, Kiev, 1961) [in Russian].Google Scholar
  24. 24.
    A. M. Prokhorov, Yu. M. Gufan, E. S. Larin, et al., Dokl. Akad. Nauk SSSR, 227, 1369 (1984).MathSciNetGoogle Scholar
  25. 25.
    E. I. Kut’in, V. L. Lorman, and S. V. Pavlov, Usp. Fiz. Nauk 161, 109 (1991).MathSciNetCrossRefGoogle Scholar
  26. 26.
    T. Poston and I. Stewart, Theory of Catastrophes and Its Application (Pitman, London, 1978).MATHGoogle Scholar
  27. 27.
    V. I. Arnol’d, A. N. Varchenko, and S. M. Gusein-Zade, Specific Features of Differentiable Maps (Nauka, Moscow, 1982), Vol. 1 [in Russian].Google Scholar
  28. 28.
    V. B. Shirokov, Crystallogr. Rep. 56 (3), 475 (2011).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    V. P. Sakhnenko and V. M. Talanov, Fiz. Tverd. Tela 21, 2435 (1979).Google Scholar
  30. 30.
    V. P. Sakhnenko and V. M. Talanov, Fiz. Tverd. Tela 22, 785 (1980).Google Scholar
  31. 31.
    V. M. Talanov and A. A. Mukovnin, Eur. Phys. J. B 86, 448 (2013).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    A. A. Mukovnin and V. M. Talanov, Eur. Phys. J. B 87, 34 (2014).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    N. V. Pashchenko and V. M. Talanov, Kristallografiya 40 (6), 973 (1995).Google Scholar
  34. 34.
    N. V. Pashchenko and V. M. Talanov, Kristallografiya 40 (6), 982 (1995).Google Scholar
  35. 35.
    V. B. Shirokov and V. I. Torgashev, Crystallogr. Rep. 49 (1), 20 (2004).ADSCrossRefGoogle Scholar
  36. 36.
    H. T. Stokes and D. M. Hatch, ISOTROPY Software Suite, isobyueduGoogle Scholar
  37. 37.
    D. M. Hatch and H. T. Stokes, Computer Modeling of Phase Diagrams (Metallyrgical Society of AMIE, Pennsylvania, 1986).Google Scholar
  38. 38.
    R. E. Vandenberghe, E. Legrand, D. Scheerlinek, et al., Acta Crystallogr. B 32, 2796 (1976).CrossRefGoogle Scholar
  39. 39.
    V. M. Talanov, Izv. Akad. Nauk SSSR, Neorg. Mater. 26, 2428 (1990).Google Scholar
  40. 40.
    V. M. Talanov and N. V. Fedorova, Crystallogr. Rep. 42 (3), 350 (1997).ADSGoogle Scholar
  41. 41.
    V. M. Talanov and N. V. Fedorova, Crystallogr. Rep. 42 (3), 345 (1997).ADSGoogle Scholar
  42. 42.
    V. M. Talanov, Crystallogr. Rep. 44 (6), 929 (1996).ADSMathSciNetGoogle Scholar
  43. 43.
    O. van der Biest and G. Thomas, Acta Crystallogr. A 31, 70 (1975).ADSCrossRefGoogle Scholar
  44. 44.
    E. J. Bergholtz, A. M. Laüchli, and R. Moessner, Phys. Rev. Lett. 105, 237202 (2010).ADSCrossRefGoogle Scholar
  45. 45.
    G. Bayer, J. Less-Common Metals 12, 326 (1967).CrossRefGoogle Scholar
  46. 46.
    R. E. Vandenberghe and V. A. M. Brabers, Acta Crystallogr. B 32, 2796 (1976).CrossRefGoogle Scholar
  47. 47.
    Yu. Steinikeb and B. Wallis, Cyst. Res. Technol. 32, 187 (1997).CrossRefGoogle Scholar
  48. 48.
    P. Strobel, A. Ibarra-Palos, M. Anne, et al., Solid State Sci. 5, 1009 (2003).ADSCrossRefGoogle Scholar
  49. 49.
    S. J. Marin, M. O’Keeffe, and D. E. Partin, J. Solid. State Chem. 13, 413 (1994).ADSCrossRefGoogle Scholar
  50. 50.
    P. Tarte and R. Collongues, Ann. Chim. 9, 135 (1964).Google Scholar
  51. 51.
    P. Strobel, A. Ibarra-Palos, M. Anne, et al., J. Mater. Chem. 0, 429 (2000).CrossRefGoogle Scholar
  52. 52.
    T. Takayama, A. Yaresko, A. Matsumoto, et al., Sci. Rep. 4, 6818 (2014).ADSCrossRefGoogle Scholar
  53. 53.
    J. C. Joubert, G. Berthet, and E. F. Bertaut, Problems of Nonstoichiometry, Ed. by A. Rabenau (Elsevier, New York, 1970).Google Scholar
  54. 54.
    J. C. Joubert and A. Durif, Bull. Soc. Franc. Miner. Crystallogr. 87, 517 (1964).Google Scholar
  55. 55.
    J. C. Joubert and A. Durif, Bull. Soc. Franc. Miner. Crystallogr. 87, 47 (1964).Google Scholar
  56. 56.
    G. Berthet, These 3e Cycle, Contribution a L’etude Des Composes Lacunaires Ionigues, Grenoble, 1968.Google Scholar
  57. 57.
    J. C. Joubert and A. Durif, Comptes Rendues Acad. Sci. 258, 4482 (1964).Google Scholar
  58. 58.
    V. M. Talanov, Phys. Status Solidi B 162, 339 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • V. M. Talanov
    • 1
  • M. V. Talanov
    • 2
  • V. B. Shirokov
    • 2
    • 3
  1. 1.South-Russian StateTechnical UniversityNovocherkasskRussia
  2. 2.Southern Federal UniversityRostov-on-DonRussia
  3. 3.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia

Personalised recommendations