Advertisement

Crystallography Reports

, Volume 61, Issue 2, pp 258–262 | Cite as

Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing

  • I. V. KubasovEmail author
  • A. M. Kislyuk
  • A. S. Bykov
  • M. D. Malinkovich
  • R. N. Zhukov
  • D. A. Kiselev
  • S. V. Ksenich
  • A. A. Temirov
  • N. G. Timushkin
  • Yu. N. Parkhomenko
Real Structure of Crystals

Abstract

The bidomain structures produced by light external heating in z-cut lithium niobate and lithium tantalate single crystals are formed and studied. Interdomain regions about 200 and 40 μm wide in, respectively, LiNbO3 and LiTaO3 bidomain crystals are visualized and studied by optical microscopy and piezoresponse force microscopy. Extended chains and lines of domains in the form of thin layers with a width less than 10 μm in volume, which penetrate the interdomain region and spread over distances of up to 1 mm, are found.

Keywords

Crystallography Report Lithium Niobate Ferroelectric Phase Transition Lithium Niobate Crystal Internal Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Blistanov, Crystals for Quantum and Nonlinear Optics (Izd-vo MISIS, Moscow, 2000) [in Russian].Google Scholar
  2. 2.
    Yu. S. Kuz’minov, Lithium Niobate and Tantalate: Materials for Nonlinear Optics (Nauka, Moscow, 1975) [in Russian].Google Scholar
  3. 3.
    I. V. Kubasov, M. S. Timshina, D. A. Kiselev, et al., Crystallogr. Rep. 60 (5), 700 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    M. Tasson, H. Legal, J. C. Gay, et al., Ferroelectrics 13, 479 (1976).CrossRefGoogle Scholar
  5. 5.
    A. S. Bykov, S. G. Grigoryan, R. N. Zhukov, et al., Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh. 61, 11 (2013).Google Scholar
  6. 6.
    A. S. Bykov, S. G. Grigoryan, R. N. Zhukov, et al., Russ. Microelectron. 43, 536 (2014).CrossRefGoogle Scholar
  7. 7.
    K. Nassau, H. J. Levinstein, and G. M. Loiacono, Appl. Phys. Lett. 6, 228 (1965).ADSCrossRefGoogle Scholar
  8. 8.
    A. Kholkin, A. Morozovska, D. Kiselev, et al., Adv. Funct. Mater. 21, 1977 (2011).CrossRefGoogle Scholar
  9. 9.
    A. L. Kholkin, D. A. Kiselev, I. K. Bdikin, et al., Mater. 3, 4860 (2010).CrossRefGoogle Scholar
  10. 10.
    D. A. Kiselev, A. S. Bykov, R. N. Zhukov, et al., Crystallogr. Rep. 57, 781 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    A. L. Tolstikhina, R. V. Gainutdinov, M. L. Zanaveskin, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2, 722 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • I. V. Kubasov
    • 1
    Email author
  • A. M. Kislyuk
    • 1
  • A. S. Bykov
    • 1
  • M. D. Malinkovich
    • 1
  • R. N. Zhukov
    • 1
  • D. A. Kiselev
    • 1
  • S. V. Ksenich
    • 1
  • A. A. Temirov
    • 1
  • N. G. Timushkin
    • 1
  • Yu. N. Parkhomenko
    • 1
  1. 1.National University of Science and Technology “MISiS”MoscowRussia

Personalised recommendations