Crystallography Reports

, Volume 61, Issue 2, pp 275–284 | Cite as

Point defects and dichroism in langasite and langatate crystals

  • N. S. Kozlova
  • O. A. Busanov
  • E. V. ZabelinaEmail author
  • A. P. Kozlova
  • M. B. Bykova
Physical Properties of Crystals


The hypotheses about the nature of color centers in langasite family crystals that are discussed in the literature are analyzed. Optical transmission spectra in the wavelength range of 200–800 nm are recorded for langasite and langatate crystals grown in atmospheres of argon and argon mixed with oxygen in different concentrations, both in the initial state and after isothermal annealings at 1000°C in nitrogen, in air, or in vacuum. Dichroism is observed in langasite and langatate crystals, and spectral dependences of the degrees of dichroism are plotted.


Crystallography Report Color Center Gallium Oxide Crucible Material Lithium Tantalate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. L. Belokoneva and N. V. Belov, Dokl. Akad. Nauk SSSR, 260 (6), 1363 (1981).Google Scholar
  2. 2.
    A. A. Kaminskii, Physics and Spectroscopy of Laser Crystals (Nauka, Moscow, 1986) [in Russian].Google Scholar
  3. 3.
    B. V. Grinev, M. F. Dubovik, and A. V. Tolmachev, Optical Single Crystals of Complex Oxide Compounds (Institute of Single Crystals, Kharkov, 2002) [in Russian].Google Scholar
  4. 4.
    B. V. Mill’, B. A. Maximov, Yu. V. Pisarevsky, et al., IEEE Ultrasonic, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, 2004, p. 52.Google Scholar
  5. 5.
    I. A. Andreev, Tekh. Phys. 49 (9), 1101 (2004).Google Scholar
  6. 6.
    H. Takeda, S. Tanaka, S. Izukawa, et al., IEEE Int. Ultrason. Symp. 1 (18–21), 560 (2005).Google Scholar
  7. 7.
    A. A. Kaminsky, Laser Crystals: Their Physics and Properties (Springer, Berlin, 1981).CrossRefGoogle Scholar
  8. 8.
    S. Uda, S. Q. Wang, N. Konishi, et al., J. Cryst. Growth 237–239, 707 (2002).CrossRefGoogle Scholar
  9. 9.
    S. Uda and O. Buzanov, J. Cryst. Growth 211, 318 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Kaminskii, A. V. Butashin, I. A. Maslyanitsin, et al., Phys. Status Solidi A, No. 112, K49 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    O. A. Buzanov, E. V. Zabelina, and N. S. Kozlova, Crystallogr. Rep. 52 (4), 691 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    O. A. Buzanov, N. S. Kozlova, and N. A. Siminel, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., No. 2, 21 (2012).Google Scholar
  13. 13.
    M. Itoh, S. Takagi, M. Kitaura, et al., J. Lumin. 122–123, 205 (2007).CrossRefGoogle Scholar
  14. 14.
    Y. Futami, T. Yanagida, Y. Fujimoto, et al., Opt. Mater. 34, 1513 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    R. Balda, J. Azkargorta, I. Iparraguirre, et al., Opt. Mater., No. 8, 99 (1997).ADSCrossRefGoogle Scholar
  16. 16.
    A. A. Kaminskii, Sov. Phys. Dokl. 33 (6), 849 (1988).Google Scholar
  17. 17.
    X. H. Fu, Y. Che, and Y. L. Li, Solid State Liquid Lasers 21 (6), 995 (2011).Google Scholar
  18. 18.
    Z. Wang, Y. Yin, and D. Yuan, J. Alloys Compd. 436 (1–2), 364 (2007).CrossRefGoogle Scholar
  19. 19.
    Z. Wang, D. Yuan, X. Shi, et al., J. Cryst. Growth 257 (1–2) 141 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    S. Georgescu, O. Toma, A. M. Chinie et al., Opt. Mater. 30 (6), 1007 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    Z. Wang, D. Yuan, X. Shi, et al., J. Cryst. Growth 263 (1–4), 246 (2004).ADSCrossRefGoogle Scholar
  22. 22.
    J. Komar, R. Lisiecki, W. Ryba-Romanowski, et al., J. Alloys Compd. 610, 50 (2014).CrossRefGoogle Scholar
  23. 23.
    S. Georgescu, O. Toma, A. M. Voiculescu, et al., Phys. B (Amsterdam, Neth.) 407 (7), 1124 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    E. Boursier, P.·Segonds, D. Roshchupkin, et al., Opt. lett. 39 (13), 4033 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    P. G. Zverev and G. V. Shilova, Laser Physics Workshop, 2015, Sem. 5.Google Scholar
  26. 26.
    S. Hutagalung, Material Science and Technology (Intech, 2012).CrossRefGoogle Scholar
  27. 27.
    J. Bohm, R. B. Heimann, M. Hengst, et al., J. Cryst. Growth 204, 128 (1999).ADSCrossRefGoogle Scholar
  28. 28.
    N. Greenwood and A. Earnshaw, Chemistry of the Elements (Elsevier, 1997).Google Scholar
  29. 29.
    S. Zhang, Y. Zheng, H. Kong, et al., J. Appl. Phys., No. 105, 114107 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    O. A. Buzanov, A. V. Naumov, V. V. Nechaev, et al., Proc. 1996 IEEE Int. Freq. Control Symp., 1996, p. 131.CrossRefGoogle Scholar
  31. 31.
    A. V. Butashin, V. A. Fedorov, V. Meshcheryakov, et al., Proc. XIII Natl. Conf. on Crystal Growth, Moscow, 2008, p. 532.Google Scholar
  32. 32.
    N. S. Kozlova, O. A. Busanov, E. V. Zabelina, et al., Bull. Russ. Acad. Sci., Phys. 78 (11), 1227 (2014).CrossRefGoogle Scholar
  33. 33.
    E. N. Domoroshchina, G. M. Kuz’micheva, V. B. Rybakov, et al., Perspekt. Mater.: Mater. Kvant. Elektron. Foton., No. 4, 17 (2004).Google Scholar
  34. 34.
    N. S. Kozlova, A. P. Kozlova, and E. V. Zabelina, Mater. IX Int. Conf. “Effective Use of Resources and Environmental Protection—Key Problems of the Development of Mining and Metallurgical Complex” and XII Int. Sci. Conf. “Promising Technologies, Equipment and Analytical Systems for Materials Science and Nanomaterials”, Kazakhstan, Ust’-Kamenogorsk, 2015, p. 159.Google Scholar
  35. 35.
    N. S. Kozlova, O. A. Buzanov, I. S. Didenko, et al., Book of Abstracts of “XXII Congress and General Assembly of the International Union of Crystallography,” 2011, p. 716.Google Scholar
  36. 36.
    T. Taishi, T. Hayashi, N. Bamba, et al., Phys. B: Condens. Matter 401–402, 437 (2007).CrossRefGoogle Scholar
  37. 37.
    H. Kimura, S. Uda, O. Buzanov, et al., J. Electoceram. 20, 73 (2008).CrossRefGoogle Scholar
  38. 38.
    E. N. Domoroshchina, A. B. Dubovskii, G. M. Kuz’micheva, et al., Inorgan. Mater. 41 (11), 1218 (2005).CrossRefGoogle Scholar
  39. 39.
    G. M. Kuz’micheva, I. A. Kaurova, V. B. Rybakov, et al., Cryst. Res. Technol. 47 (2), 131 (2012).CrossRefGoogle Scholar
  40. 40.
    V. I. Burkov, A. F. Konstantinova, B. V. Mill’, et al., Crystallogr. Rep. 54 (4), 613 (2009).ADSCrossRefGoogle Scholar
  41. 41.
    B. V. Mill’, A. V. Butashin, G. G. Khodzhabagyan, et al., Dokl. Akad. Nauk SSSR, 264 (6), 1385 (1982).Google Scholar
  42. 42.
    M. P. Shaskol’skaya, Crystallography (Vysshaya shkola, Moscow, 1976) [in Russian].Google Scholar
  43. 43.
    S. E. Livingstone, Chemistry of Ruthenium, Rhodium, Palladium, Osmium, Iridium, and Platinum (Elsevier, Amsterdam, 1975).Google Scholar
  44. 44.
    M. F. Dubovik, R. A. Katrunov, and T. I. Korshikova, IEEE Int. Frequency Control Symp., No. 95, 638 (1995).Google Scholar
  45. 45.
    Z. Wang, D. Yuan, L. Pan, et al., Opt. Mater. 23, 471 (2003).ADSCrossRefGoogle Scholar
  46. 46.
    Z. B. Perekalina, T. F. Veremeichik, K. A. Kaldybaeva, and A. D. Tynaev, Crystallogr. Rep. 45 (2), 304 (2000).ADSCrossRefGoogle Scholar
  47. 47.
    A. A. Blistanov, Crystals for Quantum and Nonlinear Optics (Izd-vo MISIS, Moscow, 2007) [in Russian].Google Scholar
  48. 48.
    N. S. Kozlova, O. A. Buzanov, and A. G. Chernykh, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh. 13 (3), 168 (2014).Google Scholar
  49. 49.
    K. A. Kaldybaeva, A. F. Konstantinova, and Z. B. Perekalina, Gyrotropy of Uniaxial Absorbing Crystals (ISPIN, Moscow, 2000) [in Russian].Google Scholar
  50. 50.
    GOST (State Standard) 26148-84: Fotometry. Terms and Definitions, 1984.Google Scholar
  51. 51.
    GOST (State Standard) 7601-78: Physical Optics. Terms, Letter Designations, and Definitions of Basic Values, 1978.Google Scholar
  52. 52.
    G. S. Landsberg, Optics (Fizmatlit, Moscow, 2003) [in Russian].Google Scholar
  53. 53.
    A. A. Maier, Physical Chemistry of Solids: Crystal Optics. A Handbook (Izd-vo MKhTI im. D.I. Mendeleeva, Moscow, 1984) [in Russian].Google Scholar
  54. 54.
    A. A. Kaminskii, B. V. Mill, G. G. Khodzhabagyan, et al., Phys. Status Solidi A 80, 387 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • N. S. Kozlova
    • 1
  • O. A. Busanov
    • 2
  • E. V. Zabelina
    • 1
    Email author
  • A. P. Kozlova
    • 1
  • M. B. Bykova
    • 1
  1. 1.National University of Science and Technology “MISiS”MoscowRussia
  2. 2.ОАО Fomos-MaterialsMoscowRussia

Personalised recommendations