Crystallography Reports

, Volume 60, Issue 4, pp 578–582 | Cite as

Carbon nanoscrolls on the surface of nanocrystalline graphite and diamond films

  • N. O. SkovorodnikovEmail author
  • S. A. Malykhin
  • F. T. Tuyakova
  • R. R. Ismagilov
  • A. N. Obraztsov
Nanomaterials, Ceramics


Nanocrystalline graphite and diamond films with needlelike nanostructures on their surface have been obtained by plasma-enhanced chemical vapor deposition. According to the experimental data, these aggregates have the same nature for films of both types: they are tubular carbon nanoscrolls with a polygonal cross section. Nanoscrolls are formed by a helically folded graphene sheet; they look like twisted prisms. The needlelike prismatic structures have an average diameter in the range of 50‒500 nm, and their length reaches several micrometers. Possible mechanisms of formation of carbon nanostructures are discussed.


Crystallography Report Methane Concentration Diamond Film Carbon Nanostructures Nanocarbon Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Hirsch, Nat. Mater. Nature Publ. Group 9, 868 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    M. Inagaki, New Carbons: Control of Structure and Functions (Elsevier, 2000), p. 240.Google Scholar
  3. 3.
    E. A. Ekimov, V. A. Sidorov, E. D. Bauer, et al., Nature 428, 542 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Zolotukhin, R. R. Ismagilov, M. A. Dolganov, and A. N. Obraztsov, J. Nanoelectron. Optoelectron. 7, 22 (2012).CrossRefGoogle Scholar
  5. 5.
    G. M. Mikheev, K. G. Mikheev, T. N. Mogileva, et al., Kvantovaya Elektron. 44, 1 (2014).CrossRefGoogle Scholar
  6. 6.
    A. N. Obraztsov and V. I. Kleshch, J. Nanoelectron. Optoelectron. 4, 207 (2009).CrossRefGoogle Scholar
  7. 7.
    S. A. Lyashenko, A. P. Volkov, R. R. Ismagilov, and A. N. Obraztsov, Tech. Phys. Lett. 35, 249 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    A. L. Chuvilin, V. L. Kuznetsov, and A. N. Obraztsov, Carbon 47, 3099 (2009).CrossRefGoogle Scholar
  9. 9.
    R. R. Ismagilov, A. A. Zolotukhin, P. V. Shvets, and A. N. Obraztsov, J. Nanoelectron. Optoelectron. 7, 90 (2012).CrossRefGoogle Scholar
  10. 10.
    A. V. Tyurnina, R. R. Ismagilov, A. V. Chuvilin, and A. N. Obraztsov, Phys. Status Solidi B 247, 3010 (2010).CrossRefGoogle Scholar
  11. 11.
    R. R. Ismagilov, P. V. Shvets, A. Yu. Kharin, and A. N. Obraztsov, Crystallogr. Rep. 56 (2),310 2011.ADSCrossRefGoogle Scholar
  12. 12.
    R. R. Ismagilov, P. V. Shvets, A. A. Zolotukhin, and A. N. Obraztsov, J. Nanoelectron. Optoelectron. 4, 243 (2009).CrossRefGoogle Scholar
  13. 13.
    J. E. Butler and A. V. Sumant, Chem. Vap. Depos. 14, 145 (2008).CrossRefGoogle Scholar
  14. 14.
    S. Amelinckx, A. Lucas, and P. Lambin, Rep. Prog. Phys. 62, 1471 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • N. O. Skovorodnikov
    • 1
    Email author
  • S. A. Malykhin
    • 1
  • F. T. Tuyakova
    • 2
  • R. R. Ismagilov
    • 1
  • A. N. Obraztsov
    • 1
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Electronics, and AutomationMoscow State Technical University of Radio EngineeringMoscowRussia

Personalised recommendations