Carbon nanoscrolls on the surface of nanocrystalline graphite and diamond films
Nanomaterials, Ceramics
First Online:
Received:
- 41 Downloads
- 2 Citations
Abstract
Nanocrystalline graphite and diamond films with needlelike nanostructures on their surface have been obtained by plasma-enhanced chemical vapor deposition. According to the experimental data, these aggregates have the same nature for films of both types: they are tubular carbon nanoscrolls with a polygonal cross section. Nanoscrolls are formed by a helically folded graphene sheet; they look like twisted prisms. The needlelike prismatic structures have an average diameter in the range of 50‒500 nm, and their length reaches several micrometers. Possible mechanisms of formation of carbon nanostructures are discussed.
Keywords
Crystallography Report Methane Concentration Diamond Film Carbon Nanostructures Nanocarbon Material
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.A. Hirsch, Nat. Mater. Nature Publ. Group 9, 868 (2010).ADSCrossRefGoogle Scholar
- 2.M. Inagaki, New Carbons: Control of Structure and Functions (Elsevier, 2000), p. 240.Google Scholar
- 3.E. A. Ekimov, V. A. Sidorov, E. D. Bauer, et al., Nature 428, 542 (2004).ADSCrossRefGoogle Scholar
- 4.A. A. Zolotukhin, R. R. Ismagilov, M. A. Dolganov, and A. N. Obraztsov, J. Nanoelectron. Optoelectron. 7, 22 (2012).CrossRefGoogle Scholar
- 5.G. M. Mikheev, K. G. Mikheev, T. N. Mogileva, et al., Kvantovaya Elektron. 44, 1 (2014).CrossRefGoogle Scholar
- 6.A. N. Obraztsov and V. I. Kleshch, J. Nanoelectron. Optoelectron. 4, 207 (2009).CrossRefGoogle Scholar
- 7.S. A. Lyashenko, A. P. Volkov, R. R. Ismagilov, and A. N. Obraztsov, Tech. Phys. Lett. 35, 249 (2009).ADSCrossRefGoogle Scholar
- 8.A. L. Chuvilin, V. L. Kuznetsov, and A. N. Obraztsov, Carbon 47, 3099 (2009).CrossRefGoogle Scholar
- 9.R. R. Ismagilov, A. A. Zolotukhin, P. V. Shvets, and A. N. Obraztsov, J. Nanoelectron. Optoelectron. 7, 90 (2012).CrossRefGoogle Scholar
- 10.A. V. Tyurnina, R. R. Ismagilov, A. V. Chuvilin, and A. N. Obraztsov, Phys. Status Solidi B 247, 3010 (2010).CrossRefGoogle Scholar
- 11.R. R. Ismagilov, P. V. Shvets, A. Yu. Kharin, and A. N. Obraztsov, Crystallogr. Rep. 56 (2),310 2011.ADSCrossRefGoogle Scholar
- 12.R. R. Ismagilov, P. V. Shvets, A. A. Zolotukhin, and A. N. Obraztsov, J. Nanoelectron. Optoelectron. 4, 243 (2009).CrossRefGoogle Scholar
- 13.J. E. Butler and A. V. Sumant, Chem. Vap. Depos. 14, 145 (2008).CrossRefGoogle Scholar
- 14.S. Amelinckx, A. Lucas, and P. Lambin, Rep. Prog. Phys. 62, 1471 (1999).ADSCrossRefGoogle Scholar
Copyright information
© Pleiades Publishing, Inc. 2015